Luke Copland
University of Ottawa
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Luke Copland.
Geocarto International | 2004
Michael P. Bishop; Jeffrey A. Olsenholler; John F. Shroder; Roger G. Barry; Bruce H. Raup; Andrew B. G. Bush; Luke Copland; John L. Dwyer; Andrew G. Fountain; Wilfried Haeberli; Andreas Kääb; Frank Paul; Dorothy K. Hall; Jeffrey S. Kargel; Bruce F. Molnia; Dennis C. Trabant; Rick Lee Wessels
Abstract Concerns over greenhouse‐gas forcing and global temperatures have initiated research into understanding climate forcing and associated Earth‐system responses. A significant component is the Earths cryosphere, as glacier‐related, feedback mechanisms govern atmospheric, hydrospheric and lithospheric response. Predicting the human and natural dimensions of climate‐induced environmental change requires global, regional and local information about ice‐mass distribution, volumes, and fluctuations. The Global Land‐Ice Measurements from Space (GLIMS) project is specifically designed to produce and augment baseline information to facilitate glacier‐change studies. This requires addressing numerous issues, including the generation of topographic information, anisotropic‐reflectance correction of satellite imagery, data fusion and spatial analysis, and GIS‐based modeling. Field and satellite investigations indicate that many small glaciers and glaciers in temperate regions are downwasting and retreating, although detailed mapping and assessment are still required to ascertain regional and global patterns of ice‐mass variations. Such remote sensing/GIS studies, coupled with field investigations, are vital for producing baseline information on glacier changes, and improving our understanding of the complex linkages between atmospheric, lithospheric, and glaciological processes.
Arctic, Antarctic, and Alpine Research | 2011
Luke Copland; Tyler Sylvestre; Michael P. Bishop; John F. Shroder; Yeong Bae Seong; Lewis A. Owen; Andrew B. G. Bush; Ulrich Kamp
Abstract A review of published literature and satellite imagery from the late 1960s onwards has revealed 90 surge-type glaciers in the Karakoram mountains, of which 50 have not previously been described in detail. These glaciers were identified by a number of surface features indicative of surge-type behavior such as looped moraines, rapid terminus advance, strandlines and rapid changes in surface crevassing. These observations indicate that surge-type behavior is more common and widespread than previously believed on Karakoram glaciers. There is strong spatial clustering of the surge-type glaciers, and a doubling in the number of new surges in the 14 years after 1990 (26 surges) than in the 14 years before 1990 (13 surges). This is coincident with a period of increased precipitation and positive glacier mass balance in this region, and supports previous studies which have found that mass balance has an important control on the frequency of glacier surging.
Geografiska Annaler Series A-physical Geography | 2000
John F. Shroder; Michael P. Bishop; Luke Copland; Valerie Sloan
The origin and mobilization of the extensive debris cover associated with the glaciers of the Nanga Parbat Himalaya is complex. In this paper we propose a mechanism by which glaciers can form rock glaciers through inefficiency of sediment transfer from glacier ice to meltwater. Inefficient transfer is caused by various processes that promote plentiful sediment supply and decrease sediment transfer potential. Most debris‐covered glaciers on Nanga Parbat with higher velocities of movement and/ or efficient debris transfer mechanisms do not form rock glaciers, perhaps because debris is mobilized quickly and removed from such glacier systems. Those whose ice movement activity is lower and those where inefficient sediment transfer mechanisms allow plentiful debris to accumulate, can form classic rock glaciers. We document here with maps, satellite images, and field observations the probable evolution of part of a slow and inefficient ice glacier into a rock glacier at the margins of Sachen Glacier in c. 50 years, as well as several other examples that formed in a longer period of time. Sachen Glacier receives all of its nourishment from ice and snow avalanches from surrounding areas of high relief, but has low ice velocities and no efficient system of debris removal. Consequently it has a pronounced digitate terminus with four lobes that have moved outward from the lateral moraines as rock glaciers with prounced transverse ridges and furrows and steep fronts at the angle of repose. Raikot Glacier has a velocity five times higher than Sachen Glacier and a thick cover of rock debris at its terminus that is efficienctly removed. During the advance stage of the glacier since 1994, ice cliffs were exposed at the terminus, and an outbreak flood swept away much debris from its margins and terminus. Like the Sachen Glacier that it resembles, Shaigiri Glacier receives all its nourishment from ice and snow avalanches and has an extensive debris cover with steep margins close to the angle of repose. It has a high velocity similar to Raikot Glacier and catastrophic breakout floods have removed debris from its terminus twice in the recent past. In addition, the Shaigiri terminus blocked the Rupal River during the Little Ice Age and is presently being undercut and steepened by the river. With higher velocities and more efficient sediment transfer systems, neither the Raikot nor the Shaigiri form classic rock‐glacier morphologies.
Annals of Glaciology | 2009
Luke Copland; Sierra Pope; Michael P. Bishop; John F. Shroder; Penelope Clendon; Andrew B. G. Bush; Ulrich Kamp; Yeong Bae Seong; Lewis A. Owen
Abstract Optical matching of ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) satellite image pairs is used to determine the surface velocities of major glaciers across the central Karakoram. The ASTER images were acquired in 2006 and 2007, and cover a 60×120km region over Baltoro glacier, Pakistan, and areas to the north and west. The surface velocities were compared with differential global position system (GPS) data collected on Baltoro glacier in summer 2005. The ASTER measurements reveal fine details about ice dynamics in this region. For example, glaciers are found to be active over their termini even where they are very heavily debris-covered. The characteristics of several surge-type glaciers were measured, with terminus advances of several hundred meters per year and the displacement of trunk glaciers as surge glaciers pushed into them. This study is the first synthesis of glacier velocities across this region, and provides a baseline against which both past and future changes can be compared.
Journal of Glaciology | 2009
Duncan J. Quincey; Luke Copland; Christoph Mayer; Michael P. Bishop; Adrian Luckman; M. Belò
Quincey DJ, Copland L, Mayer C, Bishop M, Luckman A, Belo M. (2009). Ice velocity and climate variations for the Baltoro Glacier, Pakistan. Journal of Glaciology, 55 (194), 1061-1071. Sponsorship: RCUK/US National Science Foundation / US National Geographic Society / Natural Sciences and Engineering Research Council of Canada / Canadian Foundation for Innovation / Ontario Research Fund / University of Ottawa
Journal of Glaciology | 2003
Luke Copland; Martin Sharp; Peter Nienow
The surface velocity of a predominantly cold polythermal glacier (John Evans Glacier, Ellesmere Island, Canada) varies significantly on both seasonal and shorter time-scales. Seasonal variations reflect the penetration of supraglacial water to the glacier bed through significant thicknesses of cold ice. Shorter-term events are associated with periods of rapidly increasing water inputs to the subglacial drainage system. Earlyseason short-term events immediately follow the establishment of a drainage connection between glacier surface and glacier bed, and coincide with the onset of subglacial outflow at the terminus. A mid-season short-term event occurred as surface melting resumed following cold weather, and may have been facilitated by partial closure of subglacial channels during this cold period. There is a close association between the timing and spatial distribution of horizontal and vertical velocity anomalies, the temporal pattern of surface water input to the glacier, and the formation, seasonal evolution and distribution of subglacial drainage pathways. These factors presumably control the occurrence of highwater-pressure events and water storage at the glacier bed. The observed coupling between surface water inputs and glacier velocity may allow predominantly cold polythermal glaciers to respond rapidly to climate-induced changes in surface melting.
Annals of Glaciology | 2003
Luke Copland; Julian A. Dowdeswell; Scott Polar
Abstract A systematic review of 1959/60 aerial photography, and 1999/2000 Landsat 7 imagery, has identified 51 surge-type polythermal glaciers in the Canadian High Arctic. These were identified from the presence of features such as looped medial moraines, intense folding visible at the surface, rapid terminus advance, heavy surface crevassing, and high surface velocities. These observations suggest that surging glaciers are much more common than previously believed in the Canadian High Arctic, where only six surge-type glaciers have previously been described. Of the 51 surge-type glaciers identified in this study, 15 were observed in the active phase in the 1959/60 and/or 1999/2000 imagery. The most dramatic advances have occurred on western Axel Heiberg Island, where Iceberg,“Good Friday Bay” and Airdrop Glaciers have all advanced by 4–7 km between1959 and 1999. For glaciers with repeat Landsat 7 coverage from 1999 and 2000, image correlation software was used to determine the magnitude and spatial distribution of surge velocities. For example,“Mittie” Glacier on Manson Icefield was moving at a rate of up to 1 kma–over a distance of at least 25 km back from its terminus. The terminus of this glacier has advanced by at least 4 km since 1959, and the glacier was observed to be heavily crevassed during overflights in April 2000, with clear signs of surface lowering of 10–25 m indicated by a strandline.
Geophysical Research Letters | 2007
Luke Copland; Derek R. Mueller; Laurie Weir
[1] On August 13, 2005, almost the entire Ayles Ice Shelf (87.1 km 2 ) calved off within an hour and created a new 66.4 km 2 ice island in the Arctic Ocean. This loss of one of the six remaining Ellesmere Island ice shelves reduced their overall area by ∼7.5%. The ice shelf was likely weakened prior to calving by a long-term negative mass balance related to an increase in mean annual temperatures over the past 50+ years. The weakened ice shelf then calved during the warmest summer on record in a period of high winds, record low sea ice conditions and the loss of a semi-permanent landfast sea ice fringe. Climate reanalysis suggests that a threshold of >200 positive degree days year -1 is important in determining when ice shelf calving events occur on N. Ellesmere Island.
Eos, Transactions American Geophysical Union | 2000
Hugh H. Kieffer; Jeffrey S. Kargel; Roger G. Barry; Robert Bindschadler; Michael P. Bishop; David J. MacKinnon; Atsumu Ohmura; Bruce H. Raup; Massimo Antoninetti; Jonathan L. Bamber; Mattias Braun; Ian A. Brown; Denis Cohen; Luke Copland; Jon DueHagen; Rune V. Engeset; B. B. Fitzharris; Koji Fujita; Wilfried Haeberli; Jon Oue Hagen; Dorothy K. Hall; Martin Hoelzle; Maria Johansson; Andi Kaab; Max Koenig; Vladimir Konovalov; Max Maisch; Frank Paul; Frank Rau; Niels Reeh
The mapping and measurement of glaciers and their changes are useful in predicting sea-level and regional water supply, studying hazards and climate change [Haeberli et al., 1998],and in the hydropower industry Existing inventories cover only about 67,000 of the worlds estimated 160,000 glaciers and are based on data collected over 50 years or more [e.g.,Haeberli et al., 1998]. The data available have proven that small ice bodies are disappearing at an accelerating rate and that the Antarctic ice sheet and its fringing ice shelves are undergoing unexpected, rapid change. According to many glaciologists, much larger fluctuations in land ice—with vast implications for society—are possible in the coming decades and centuries due to natural and anthropogenic climate change [Oppenheimer, 1998].
Climatic Change | 2014
Larissa Pizzolato; Stephen E. L. Howell; Chris Derksen; Jackie Dawson; Luke Copland
Declining sea ice area in the Canadian Arctic has gained significant attention with respect to the prospect of increased shipping activities. To investigate relationships between recent declines in sea ice area with Arctic maritime activity, trend and correlation analysis was performed on sea ice area data for total, first-year ice (FYI), and multi-year ice (MYI), and on a comprehensive shipping dataset of observed vessel transits through the Vessel Traffic Reporting Arctic Canada Traffic Zone (NORDREG zone) from 1990 to 2012. Links to surface air temperature (SAT) and the satellite derived melt season length were also investigated. Between 1990 and 2012, statistically significant increases in vessel traffic were observed within the NORDREG zone on monthly and annual time-scales coincident with declines in sea ice area (FYI, MYI, and total ice) during the shipping season and on a monthly basis. Similarly, the NORDREG zone is experiencing increased shoulder season shipping activity, alongside an increasing melt season length and warming surface air temperatures (SAT). Despite these trends, only weak correlations between the variables were identified, although a step increase in shipping activity is apparent following the former summer sea ice extent minimum in 2007. Other non-environmental factors have also likely contributed to the observed increase in Arctic shipping activity within the Canadian Arctic, such as tourism demand, community re-supply needs, and resource exploration trends.