Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Luke E. Erikson is active.

Publication


Featured researches published by Luke E. Erikson.


Nature | 2010

The magic nature of 132 Sn explored through the single-particle states of 133 Sn

K. L. Jones; Aderemi S Adekola; D. W. Bardayan; Jeffery Curtis Blackmon; K. Y. Chae; K. A. Chipps; J. A. Cizewski; Luke E. Erikson; C. Harlin; R. Hatarik; R. Kapler; R. L. Kozub; J. F. Liang; R. J. Livesay; Z. Ma; Brian H Moazen; Caroline D. Nesaraja; F. M. Nunes; S. D. Pain; N. Patterson; D. Shapira; J. F. Shriner; M. S. Smith; T. P. Swan; J. S. Thomas

Atomic nuclei have a shell structure in which nuclei with ‘magic numbers’ of neutrons and protons are analogous to the noble gases in atomic physics. Only ten nuclei with the standard magic numbers of both neutrons and protons have so far been observed. The nuclear shell model is founded on the precept that neutrons and protons can move as independent particles in orbitals with discrete quantum numbers, subject to a mean field generated by all the other nucleons. Knowledge of the properties of single-particle states outside nuclear shell closures in exotic nuclei is important for a fundamental understanding of nuclear structure and nucleosynthesis (for example the r-process, which is responsible for the production of about half of the heavy elements). However, as a result of their short lifetimes, there is a paucity of knowledge about the nature of single-particle states outside exotic doubly magic nuclei. Here we measure the single-particle character of the levels in 133Sn that lie outside the double shell closure present at the short-lived nucleus 132Sn. We use an inverse kinematics technique that involves the transfer of a single nucleon to the nucleus. The purity of the measured single-particle states clearly illustrates the magic nature of 132Sn.


Review of Scientific Instruments | 2012

A shallow underground laboratory for low-background radiation measurements and materials development.

Ricco Bonicalzi; Michael G. Cantaloub; Anthony R. Day; Luke E. Erikson; J. E. Fast; Joel B. Forrester; Erin S. Fuller; Brian D. Glasgow; Lawrence R. Greenwood; E. W. Hoppe; Todd W. Hossbach; Brian J. Hyronimus; Martin E. Keillor; Emily K. Mace; Justin I. McIntyre; Jason H. Merriman; Allan W. Myers; Cory T. Overman; Nicole R. Overman; Mark E. Panisko; Allen Seifert; Glen A. Warren; Robert C. Runkle

Pacific Northwest National Laboratory recently commissioned a new shallow underground laboratory, located at a depth of approximately 30 meters-water-equivalent. This new addition to the small class of radiation measurement laboratories located at modest underground depths houses the latest generation of custom-made, high-efficiency, low-background gamma-ray spectrometers and gas proportional counters. This paper describes the unique capabilities present in the shallow underground laboratory; these include large-scale ultra-pure materials production and a suite of radiation detection systems. Reported data characterize the degree of background reduction achieved through a combination of underground location, graded shielding, and rejection of cosmic-ray events. We conclude by presenting measurement targets and future opportunities.


Archive | 2009

Boron-Lined Neutron Detector Measurements

Azaree T. Lintereur; Richard T. Kouzes; James H. Ely; Luke E. Erikson; Edward R. Siciliano

Radiation portal monitors used for interdiction of illicit materials at borders include highly sensitive neutron detection systems. The main reason for having neutron detection capability is to detect fission neutrons from plutonium. The currently deployed radiation portal monitors (RPMs) from Ludlum and Science Applications International Corporation (SAIC) use neutron detectors based upon 3He-filled gas proportional counters, which are the most common large neutron detector. There is a declining supply of 3He in the world, and thus, methods to reduce the use of this gas in RPMs with minimal changes to the current system designs and sensitivity to cargo-borne neutrons are being investigated. Four technologies have been identified as being currently commercially available, potential alternative neutron detectors to replace the use of 3He in RPMs. Reported here are the results of tests of a newly designed boron-lined proportional counter option. This testing measured the neutron detection efficiency and gamma ray rejection capabilities of a system manufactured by Reuter Stokes.


Physical Review C | 2011

Direct reaction measurements with a 132Sn radioactive ion beam

K. L. Jones; F. M. Nunes; Aderemi S Adekola; D. W. Bardayan; Jeff Blackmon; K. Y. Chae; K. A. Chipps; Jolie A. Cizewski; Luke E. Erikson; C. Harlin; R. Hatarik; R. Kapler; R. L. Kozub; J. F. Liang; R. J. Livesay; Zhongguo J. Ma; Brian H Moazen; Caroline D. Nesaraja; Steven D Pain; N. Patterson; D. Shapira; John F. Shriner; M. S. Smith; Thomas P. Swan; J. S. Thomas

The (d,p) neutron transfer and (d,d) elastic scattering reactions were measured in inverse kinematics using a radioactive ion beam of {sup 132}Sn at 630 MeV. The elastic scattering data were taken in a region where Rutherford scattering dominated the reaction, and nuclear effects account for less than 8% of the elastic scattering cross section. The magnitude of the nuclear effects, in the angular range studied, was found to be independent of the optical potential used, allowing the transfer data to be normalized in a reliable manner. The neutron-transfer reaction populated a previously unmeasured state at 1363 keV, which is most likely the single-particle 3p{sub 1/2} state expected above the N=82 shell closure. The data were analyzed using finite-range adiabatic-wave calculations and the results compared with the previous analysis using the distorted-wave Born approximation. Angular distributions for the ground and first-excited states are consistent with the previous tentative spin and parity assignments. Spectroscopic factors extracted from the differential cross sections are similar to those found for the one-neutron states beyond the benchmark doubly magic nucleus {sup 208}Pb.


Archive | 2009

Lithium Loaded Glass Fiber Neutron Detector Tests

James H. Ely; Luke E. Erikson; Richard T. Kouzes; Azaree T. Lintereur; David C. Stromswold

Radiation portal monitors used for interdiction of illicit materials at borders include highly sensitive neutron detection systems. The main reason for having neutron detection capability is to detect fission neutrons from plutonium. The currently deployed radiation portal monitors (RPMs) from Ludlum and Science Applications International Corporation (SAIC) use neutron detectors based upon 3He-filled gas proportional counters, which are the most common large neutron detector. There is a declining supply of 3He in the world and, thus, methods to reduce the use of this gas in RPMs with minimal changes to the current system designs and sensitivity to cargo-borne neutrons are being investigated. Four technologies have been identified as being currently commercially available, potential alternative neutron detectors to replace the use of 3He in RPMs. Reported here are the results of tests of the lithium-loaded glass fibers option. This testing measured the neutron detection efficiency and gamma ray rejection capabilities of a small system manufactured by Nucsafe (Oak Ridge, TN).


ieee nuclear science symposium | 2009

Isotope identification in the GammaTracker handheld radioisotope identifier

Michael T. Batdorf; Walter K. Hensley; Carolyn E. Seifert; Leslie J. Kirihara; Luke E. Erikson; David V. Jordan

GammaTracker is a portable handheld radioisotope identifier using position sensitive CdZnTe crystals. The device uses a peak-based method for isotope identification implemented on an embedded computing platform within the device. This paper presents the run-time optimized algorithms used in this peak-based method of analysis. Performance of the algorithms is presented using measured data from gamma-ray sources.


22nd International Conference on the Application of Accelerators in Research and Industry, CAARI 2012 | 2013

A gas jet target for radioactive ion beam experiments

K.A. Chipps; D. W. Bardayan; J.C. Blackmon; J. Browne; M. Couder; Luke E. Erikson; U. Greife; U. Hager; A. Kontos; A. Lemut; L. E. Linhardt; Z. Meisel; F. Montes; Steven D Pain; D. Robertson; F. Sarazin; H. Schatz; K.T. Schmitt; M. S. Smith; Paul Andrew Vetter; M. Wiescher

New radioactive ion beam (RIB) facilities, like FRIB in the US or FAIR in Europe, will push further away from stability and enable the next generation of nuclear physics experiments. Thus, the need for improved RIB targets is more crucial than ever: developments in exotic beams should coincide with developments in targets for use with those beams, in order for nuclear physics to remain on the cutting edge. Of great importance to the future of RIB physics are scattering, transfer and capture reaction measurements of rare, exotic, and unstable nuclei on light targets such as hydrogen and helium. These measurements require targets that are dense, highly localized, and pure, and conventional targets often suffer too many drawbacks to allow for such experimental designs. Targets must also accommodate the use of large area, highly-segmented silicon detector arrays, high-efficiency gamma arrays, and novel heavy ion detectors to efficiently measure the reaction products. To address this issue, the Jet Experiments...


Journal of Radioanalytical and Nuclear Chemistry | 2013

Determining HPGe Total Detection Efficiency Using γ–γ Coincidence

Luke E. Erikson; Martin E. Keillor; Todd W. Hossbach; Leila K. Mizouni; Timothy J. Stavenger; Benjamin S. McDonald; Elwood A. Lepel; Lawrence R. Greenwood; Crystal E. Rutherford

Both the peak and total detection efficiencies are generally needed in order to calculate sample activity from a gamma spectroscopic measurement, except in the case of isotope specific calibration. This is particularly true when the sample is in close proximity to the detector and corrections for cascade summing effects are required to avoid significant inaccuracy in the result. These corrections use the total detection efficiency to correct for summing-in and summing-out events, and the extent of the correction depends on both the geometry and the gamma cascade for the isotope in question. Experimentally determining the total efficiency is a labor intensive endeavor requiring multiple measurements with a set of single-gamma-emitting standards. Modeling the total efficiency vs. energy may be less time consuming, but is also likely to produce less confidence in the final result. Pacific Northwest National Laboratory’s Radiation Detection and Nuclear Sciences group has constructed a low background 14-crystal HPGe array for sample measurement; in all measurements, samples will be in close proximity to the germanium crystals. This close geometry and the sheer number of efficiency calibrations required for the system have led us to investigate methods to simplify the efficiency calibration procedure. One method we are developing uses the γ–γ coincidence plane to isolate Compton scattering event populations, allowing experimental determination of total detection efficiency values from the measurement of a single mixed isotope standard. A description of the analysis and experimental results of this method are presented.


FUSION08: New Aspects of Heavy Ion Collisions Near the Coulomb#N#Barrier | 2009

Studies of Nuclei Close to 132Sn Using Single-Neutron Transfer Reactions

K. J. Jones; S.D. Pain; R. L. Kozub; Aderemi S Adekola; D. W. Bardayan; Jeffery Curtis Blackmon; W. N. Catford; K. Y. Chae; K. Chipps; J. A. Cizewski; Luke E. Erikson; A. L. Gaddis; U. Greife; R. Grzywacz; Christopher W Harlin; R. Hatarik; J.A. Howard; J. James; R. Kapler; W. Królas; J. F. Liang; Z. Ma; Catalin Matei; Brian H Moazen; Caroline D. Nesaraja; P. O’Malley; N. Patterson; S. V. Paulauskas; D. Shapira; J. F. Shriner

Neutron transfer reactions were performed in inverse kinematics using radioactive ion beams of 132Sn, 130Sn, and 134Te and deuterated polyethylene targets. Preliminary results are presented. The Q‐value spectra for 133Sn, 131Sn and 135Te reveal a number of previously unobserved peaks. The angular distributions are compatible with the expected lf7/2 nature of the ground state of 133Sn, and 2p3/2 for the 3.4 MeV state in 131Sn.


APPLICATION OF ACCELERATORS IN RESEARCH AND INDUSTRY: Twentieth International#N#Conference | 2009

Neutron Transfer Reactions: Surrogates for Neutron Capture for Basic and Applied Nuclear Science

J. A. Cizewski; K. L. Jones; R. L. Kozub; S.D. Pain; W. A. Peters; A. Adekola; J. Allen; D. W. Bardayan; J. A. Becker; Jeffery Curtis Blackmon; K. Y. Chae; K. A. Chipps; Luke E. Erikson; A. Gaddis; C. Harlin; R. Hatarik; J.A. Howard; M. Jandel; Micah Johnson; R. Kapler; W. Krolas; F. Liang; R. J. Livesay; Z. Ma; Catalin Matei; C. Matthews; Brian H Moazen; Caroline D. Nesaraja; P. O’Malley; N. Patterson

Neutron capture reactions on unstable nuclei are important for both basic and applied nuclear science. A program has been developed at the Holifield Radioactive Ion Beam Facility at Oak Ridge National Laboratory to study single-neutron transfer (d,p) reactions with rare isotope beams to provide information on neutron-induced reactions on unstable nuclei. Results from (d,p) studies on {sup 130,132}Sn, {sup 134}Te and {sup 75}As are discussed.

Collaboration


Dive into the Luke E. Erikson's collaboration.

Top Co-Authors

Avatar

U. Greife

Colorado School of Mines

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

K. A. Chipps

Colorado School of Mines

View shared research outputs
Top Co-Authors

Avatar

M. S. Smith

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Caroline D. Nesaraja

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

R. L. Kozub

Tennessee Technological University

View shared research outputs
Top Co-Authors

Avatar

D. W. Bardayan

University of Notre Dame

View shared research outputs
Researchain Logo
Decentralizing Knowledge