Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Luke H. Bradley is active.

Publication


Featured researches published by Luke H. Bradley.


Protein Science | 2004

De novo proteins from designed combinatorial libraries

Michael H. Hecht; Aditi Das; Abigail Go; Luke H. Bradley; Yinan Wei

Combinatorial libraries of de novo amino acid sequences can provide a rich source of diversity for the discovery of novel proteins with interesting and important activities. Randomly generated sequences, however, rarely fold into well‐ordered proteinlike structures. To enhance the quality of a library, features of rational design must be used to focus sequence diversity into those regions of sequence space that are most likely to yield folded structures. This review describes how focused libraries can be constructed by designing the binary pattern of polar and nonpolar amino acids to favor proteins that contain abundant secondary structure, while simultaneously burying hydrophobic side chains and exposing hydrophilic side chains to solvent. The “binary code” for protein design was used to construct several libraries of de novo proteins, including both α‐helical and β‐sheet structures. The recently determined solution structure of a binary patterned four‐helix bundle is well ordered, thereby demonstrating that sequences that have neither been selected by evolution (in vivo or in vitro) nor designed by computer can form nativelike proteins. Examples are presented demonstrating how binary patterned libraries have successfully produced well‐ordered structures, cofactor binding, catalytic activity, self‐assembled monolayers, amyloid‐like nanofibrils, and protein‐based biomaterials.


PLOS ONE | 2011

De Novo Designed Proteins from a Library of Artificial Sequences Function in Escherichia Coli and Enable Cell Growth

Michael Fisher; Kara L. McKinley; Luke H. Bradley; Sara R. Viola; Michael H. Hecht

A central challenge of synthetic biology is to enable the growth of living systems using parts that are not derived from nature, but designed and synthesized in the laboratory. As an initial step toward achieving this goal, we probed the ability of a collection of >106 de novo designed proteins to provide biological functions necessary to sustain cell growth. Our collection of proteins was drawn from a combinatorial library of 102-residue sequences, designed by binary patterning of polar and nonpolar residues to fold into stable 4-helix bundles. We probed the capacity of proteins from this library to function in vivo by testing their abilities to rescue 27 different knockout strains of Escherichia coli, each deleted for a conditionally essential gene. Four different strains – ΔserB, ΔgltA, ΔilvA, and Δfes – were rescued by specific sequences from our library. Further experiments demonstrated that a strain simultaneously deleted for all four genes was rescued by co-expression of four novel sequences. Thus, cells deleted for ∼0.1% of the E. coli genome (and ∼1% of the genes required for growth under nutrient-poor conditions) can be sustained by sequences designed de novo.


Protein Science | 2009

Cofactor binding and enzymatic activity in an unevolved superfamily of de novo designed 4-helix bundle proteins†

Shona C. Patel; Luke H. Bradley; Sayuri P. Jinadasa; Michael H. Hecht

To probe the potential for enzymatic activity in unevolved amino acid sequence space, we created a combinatorial library of de novo 4‐helix bundle proteins. This collection of novel proteins can be considered an “artificial superfamily” of helical bundles. The superfamily of 102‐residue proteins was designed using binary patterning of polar and nonpolar residues, and expressed in Escherichia coli from a library of synthetic genes. Sequences from the library were screened for a range of biological functions including heme binding and peroxidase, esterase, and lipase activities. Proteins exhibiting these functions were purified and characterized biochemically. The majority of de novo proteins from this superfamily bound the heme cofactor, and a sizable fraction of the proteins showed activity significantly above background for at least one of the tested enzymatic activities. Moreover, several of the designed 4‐helix bundles proteins showed activity in all of the assays, thereby demonstrating the functional promiscuity of unevolved proteins. These studies reveal that de novo proteins—which have neither been designed for function, nor subjected to evolutionary pressure (either in vivo or in vitro)—can provide rudimentary activities and serve as a “feedstock” for evolution.


PLOS ONE | 2010

Dopamine Neuron Stimulating Actions of a GDNF Propeptide

Luke H. Bradley; Josh Fuqua; April Richardson; Jadwiga Turchan-Cholewo; Yi Ai; Kristen A. Kelps; John D. Glass; Xiuquan He; Zhiming Zhang; Richard Grondin; O. Meagan Littrell; Peter Huettl; Francois Pomerleau; Don M. Gash; Greg A. Gerhardt

Background Neurotrophic factors, such as glial cell line-derived neurotrophic factor (GDNF), have shown great promise for protection and restoration of damaged or dying dopamine neurons in animal models and in some Parkinsons disease (PD) clinical trials. However, the delivery of neurotrophic factors to the brain is difficult due to their large size and poor bio-distribution. In addition, developing more efficacious trophic factors is hampered by the difficulty of synthesis and structural modification. Small molecules with neurotrophic actions that are easy to synthesize and modify to improve bioavailability are needed. Methods and Findings Here we present the neurobiological actions of dopamine neuron stimulating peptide-11 (DNSP-11), an 11-mer peptide from the proGDNF domain. In vitro, DNSP-11 supports the survival of fetal mesencephalic neurons, increasing both the number of surviving cells and neuritic outgrowth. In MN9D cells, DNSP-11 protects against dopaminergic neurotoxin 6-hydroxydopamine (6-OHDA)-induced cell death, significantly decreasing TUNEL-positive cells and levels of caspase-3 activity. In vivo, a single injection of DNSP-11 into the normal adult rat substantia nigra is taken up rapidly into neurons and increases resting levels of dopamine and its metabolites for up to 28 days. Of particular note, DNSP-11 significantly improves apomorphine-induced rotational behavior, and increases dopamine and dopamine metabolite tissue levels in the substantia nigra in a rat model of PD. Unlike GDNF, DNSP-11 was found to block staurosporine- and gramicidin-induced cytotoxicity in nutrient-deprived dopaminergic B65 cells, and its neuroprotective effects included preventing the release of cytochrome c from mitochondria. Conclusions Collectively, these data support that DNSP-11 exhibits potent neurotrophic actions analogous to GDNF, making it a viable candidate for a PD therapeutic. However, it likely signals through pathways that do not directly involve the GFRα1 receptor.


Neuropeptides | 2011

Evaluation of the physical and in vitro protective activity of three synthetic peptides derived from the pro- and mature GDNF sequence

Kristen A. Kelps; Jadwiga Turchan-Cholewo; Erin R. Hascup; Tiffany L. Taylor; Don M. Gash; Greg A. Gerhardt; Luke H. Bradley

Recently, a small 11-amino acid amidated peptide, dopamine neuron stimulating peptide-11 (DNSP-11), was shown to exert neurotrophic-like actions on primary dopaminergic neurons and in parkinsonian rat models. This suggests smaller neurotrophic-like molecules may be deliverable and modifiable for therapeutic use. Here we evaluate the molecular and cellular protection properties of DNSP-11 and two other amidated-peptides, a 5-mer (DNSP-5) and a 17-mer (DNSP-17), hypothesized to be endoproteolytically processed from the pro- and mature glial cell line-derived neurotrophic factor (GDNF) protein sequence, respectively. Far-UV circular dichroism spectra show that the three DNSPs are soluble and act independently in vitro. Reverse phase HPLC and mass spectrometry analysis show that the three peptides are stable for one month at a variety of storage and experimental conditions. To gain insight into their biodistribution properties in the brain, we used affinity chromatography to show that DNSP-17 binds heparin equally as tight as GDNF, whereas DNSP-5 and DNSP-11 do not bind heparin, which should facilitate their delivery in vivo. Finally, we present data showing that DNSP-11 provides dose-dependent protection of HEK-293 cells from staurosporine and 3-nitropropionate (3-NP) cytotoxicity, thereby supporting its broad mitochondrial-protective properties.


Protein Expression and Purification | 2012

Utilization of a calmodulin lysine methyltransferase co-expression system for the generation of a combinatorial library of post-translationally modified proteins

Roberta Magnani; Brian Chaffin; Emerson Dick; Michael L. Bricken; Robert L. Houtz; Luke H. Bradley

By successfully incorporating sequence diversity into proteins, combinatorial libraries have been a staple technology used in protein engineering, directed evolution, and synthetic biology for generating proteins with novel specificities and activities. However, these approaches mostly overlook the incorporations of post-translational modifications, which nature extensively uses for modulating protein activities in vivo. As an initial step of incorporating post-translational modifications into combinatorial libraries, we present a bacterial co-expression system, utilizing a recently characterized calmodulin methyltransferase (CaM KMT), to trimethylate a combinatorial library of the calmodulin central linker region. We show that this system is robust, with the successful over-expression and post-translational modification performed in Escherichia coli. Furthermore we show that trimethylation differentially affected the conformational dynamics of the protein upon the binding of calcium, and the thermal stability of the apoprotein. Collectively, these data support that when applied to an appropriately designed protein library scaffold, CaM KMT is able to produce a post-translationally modified library of protein sequences, thus providing a powerful tool for future protein library designs and constructions.


PLOS ONE | 2012

Active Site Mutations Change the Cleavage Specificity of Neprilysin.

Travis Sexton; Lisa J. Hitchcook; David W. Rodgers; Luke H. Bradley; Louis B. Hersh

Neprilysin (NEP), a member of the M13 subgroup of the zinc-dependent endopeptidase family is a membrane bound peptidase capable of cleaving a variety of physiological peptides. We have generated a series of neprilysin variants containing mutations at either one of two active site residues, Phe563 and Ser546. Among the mutants studied in detail we observed changes in their activity towards leucine5-enkephalin, insulin B chain, and amyloid β1–40. For example, NEPF563I displayed an increase in preference towards cleaving leucine5-enkephalin relative to insulin B chain, while mutant NEPS546E was less discriminating than neprilysin. Mutants NEPF563L and NEPS546E exhibit different cleavage site preferences than neprilysin with insulin B chain and amyloid ß1–40 as substrates. These data indicate that it is possible to alter the cleavage site specificity of neprilysin opening the way for the development of substrate specific or substrate exclusive forms of the enzyme with enhanced therapeutic potential.


Protein Expression and Purification | 2011

Expression, purification, and characterization of proteins from high-quality combinatorial libraries of the mammalian calmodulin central linker

Luke H. Bradley; Michael L. Bricken; Charlotte Randle

Combinatorial libraries offer an attractive approach towards exploring protein sequence, structure and function. Although several strategies introduce sequence diversity, the likelihood of identifying proteins with novel functions is increased when the library of genes encodes for folded and soluble structures. Here we present the first application of the binary patterning approach of combinatorial protein library design to the unique central linker region of the highly-conserved protein, calmodulin (CaM). We show that this high-quality approach translates very well to the CaM protein scaffold: all library members over-express and are functionally diverse, having a range of conformations in the presence and absence of calcium as determined by circular dichroism spectroscopy. Collectively, these data support that the binary patterning approach, when applied to the highly-conserved protein fold, can yield large collections of folded, soluble and highly-expressible proteins.


Journal of Neuroscience Methods | 2015

Methodology and effects of repeated intranasal delivery of DNSP-11 in a rat model of Parkinson's disease

Mallory J. Stenslik; Lisa F. Potts; James W.H. Sonne; Wayne A. Cass; Jadwiga Turchan-Cholewo; Francois Pomerleau; Peter Huettl; Yi Ai; Don M. Gash; Greg A. Gerhardt; Luke H. Bradley

BACKGROUND To circumvent the challenges associated with delivering large compounds directly to the brain for the treatment of Parkinsons disease (PD), non-invasive procedures utilizing smaller molecules with protective and/or restorative actions on dopaminergic neurons are needed. NEW METHOD We developed a methodology for evaluating the effects of a synthetic neuroactive peptide, DNSP-11, on the nigrostriatal system using repeated intranasal delivery in both normal and a unilateral 6-hydroxydopamine (6-OHDA) lesion rat model of PD. RESULTS Normal rats repeatedly administered varying doses of DNSP-11 intranasally for 3 weeks exhibited a significant increase in dopamine (DA) turnover in both the striatum and substantia nigra (SN) at 300μg, suggestive of a stimulative effect of the dopaminergic system. Additionally, a protective effect was observed following repeated intranasal administration in 6-OHDA lesioned rats, as suggested by: a significant decrease in d-amphetamine-induced rotation at 2 weeks; a decrease in DA turnover in the lesioned striatum; and an increased sparing of tyrosine hydroxylase (TH) positive (+) neurons in a specific sub-region of the lesioned substantia nigra pars compacta (SNpc). Finally, tracer studies showed (125)I-DNSP-11 distributed diffusely throughout the brain, including the striatum and SN, as quickly as 30min after a single intranasal dose. COMPARISON WITH EXISTING METHODS The results of bilateral intranasal administration of DNSP-11 are compared to our unilateral single infusion studies to the brain in rats. CONCLUSIONS These studies support that DNSP-11 can be delivered intranasally and maintain its neuroactive properties in both normal rats and in a unilateral 6-OHDA rat model of PD.


Peptides | 2014

Dynamic changes in dopamine neuron function after DNSP-11 treatment: Effects in vivo and increased ERK 1/2 phosphorylation in vitro.

Joshua L. Fuqua; Ofelia M. Littrell; Martin Lundblad; Jadwiga Turchan-Cholewo; Lina Abdelmoti; Emilia Galperin; Luke H. Bradley; Wayne A. Cass; Don M. Gash; Greg A. Gerhardt

Glial cell-line derived neurotrophic factor (GDNF) has demonstrated robust effects on dopamine (DA) neuron function and survival. A post-translational processing model of the human GDNF proprotein theorizes the formation of smaller, amidated peptide(s) from the proregion that exhibit neurobiological function, including an 11-amino-acid peptide named dopamine neuron stimulating peptide-11 (DNSP-11). A single treatment of DNSP-11 was delivered to the substantia nigra in the rat to investigate effects on DA-neuron function. Four weeks after treatment, potassium (K+) and D-amphetamine evoked DA release were studied in the striatum using microdialysis. There were no significant changes in DA-release after DNSP-11 treatment determined by microdialysis. Dopamine release was further examined in discrete regions of the striatum using high-speed chronoamperometry at 1-, 2-, and 4-weeks after DNSP-11 treatment. Two weeks after DNSP-11 treatment, potassium-evoked DA release was increased in specific subregions of the striatum. However, spontaneous locomotor activity was unchanged by DNSP-11 treatment. In addition, we show that a single treatment of DNSP-11 in the MN9D dopaminergic neuronal cell line results in phosphorylation of ERK1/2, which suggests a novel cellular mechanism responsible for increases in DA function.

Collaboration


Dive into the Luke H. Bradley's collaboration.

Top Co-Authors

Avatar

Don M. Gash

University of Kentucky

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yi Ai

University of Kentucky

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge