Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Luke H. Hoeppner is active.

Publication


Featured researches published by Luke H. Hoeppner.


Expert Opinion on Therapeutic Targets | 2009

Wnt signaling as a therapeutic target for bone diseases

Luke H. Hoeppner; Frank J. Secreto; Jennifer J. Westendorf

Background: There is a need to develop new bone anabolic agents because current bone regeneration regimens have limitations. The Wingless-type MMTV integration site (Wnt) pathway has emerged as a regulator of bone formation and regeneration. Objective: To review the molecular basis for Wnt pathway modulation and discuss strategies that target it and improve bone mass. Methods: Data in peer-reviewed reports and meeting abstracts are discussed. Results/conclusions: Neutralizing inhibitors of Wnt signaling have emerged as promising strategies. Small-molecule inhibitors of glycogen synthase kinase 3β increase bone mass, lower adiposity and reduce fracture risk. Neutralizing antibodies to Dickkopf 1, secreted Frizzled-related protein 1 and sclerostin produce similar outcomes in animal models. These drugs are exciting breakthroughs but are not without risks. The challenges include tissue-specific targeting and consequently, long-term safety.


Cancer Research | 2013

Neuropilin-2 Promotes Extravasation and Metastasis by Interacting with Endothelial α5 Integrin

Ying Cao; Luke H. Hoeppner; Steven Bach; Guangqi E; Yan Guo; Enfeng Wang; Jianmin Wu; Mark J. Cowley; David K. Chang; Nicola Waddell; Sean Grimmond; Andrew V. Biankin; Roger J. Daly; Xiaohui Zhang; Debabrata Mukhopadhyay

Metastasis, the leading cause of cancer death, requires tumor cell intravasation, migration through the bloodstream, arrest within capillaries, and extravasation to invade distant tissues. Few mechanistic details have been reported thus far regarding the extravasation process or re-entry of circulating tumor cells at metastatic sites. Here, we show that neuropilin-2 (NRP-2), a multifunctional nonkinase receptor for semaphorins, vascular endothelial growth factor (VEGF), and other growth factors, expressed on cancer cells interacts with α5 integrin on endothelial cells to mediate vascular extravasation and metastasis in zebrafish and murine xenograft models of clear cell renal cell carcinoma (RCC) and pancreatic adenocarcinoma. In tissue from patients with RCC, NRP-2 expression is positively correlated with tumor grade and is highest in metastatic tumors. In a prospectively acquired cohort of patients with pancreatic cancer, high NRP-2 expression cosegregated with poor prognosis. Through biochemical approaches as well as Atomic Force Microscopy (AFM), we describe a unique mechanism through which NRP-2 expressed on cancer cells interacts with α5 integrin on endothelial cells to mediate vascular adhesion and extravasation. Taken together, our studies reveal a clinically significant role of NRP-2 in cancer cell extravasation and promotion of metastasis.


Matrix Biology | 2008

Collagen 11a1 is Indirectly Activated by Lymphocyte Enhancer- binding Factor 1 (Lef1) and Negatively Regulates Osteoblast Maturation

Rachel A. Kahler; Sorcha Yingst; Luke H. Hoeppner; Eric D. Jensen; David A. Krawczak; Julia Thom Oxford; Jennifer J. Westendorf

Alpha 1 (XI) collagen (Col11a1) is essential for normal skeletal development. Mutations in Col11a1 cause Marshall and Stickler syndromes, both of which are characterized by craniofacial abnormalities, nearsightedness and hearing deficiencies. Despite its link to human diseases, few studies have described factors that control Col11a1 transcription. We previously identified Col11a1 as a differentially expressed gene in Lef1-suppressed MC3T3 preosteoblasts. Here we report that Lef1 activates the Col11a1 promoter. This activation is dependent upon the DNA binding domain of Lef1, but does not require the beta-catenin interaction domain, suggesting that it is not responsive to Wnt signals. Targeted suppression of Col11a1 with an antisense morpholino accelerated osteoblastic differentiation and mineralization in C2C12 cells, similar to what was observed in Lef1-suppressed MC3T3 cells. Moreover incubation with a purified Col11a1 N-terminal fragment, V1B, prevented alkaline phosphatase expression in MC3T3 and C2C12 cells. These results suggest that Lef1 is an activator of the Col11a1 promoter and that Col11a1 suppresses terminal osteoblast differentiation.


Journal of Cellular Physiology | 2009

Runx2 and Bone Morphogenic Protein 2 Regulate the Expression of an Alternative Lef1 Transcript During Osteoblast Maturation

Luke H. Hoeppner; Frank J. Secreto; Eric D. Jensen; Xiaodong Li; Rachel A. Kahler; Jennifer J. Westendorf

Lymphoid Enhancer Binding Factor (Lef) 1 is a transcriptional effector of the Wnt/Lrp5/β‐catenin signaling cascade, which regulates osteoblast differentiation, bone density, and skeletal strength. In this study, we describe the expression and function of an alternative Lef1 isoform in osseous cells. Lef1ΔN is a naturally occurring isoform driven by a promoter (p2) within the intron between exons 3 and 4 of Lef1. Lef1ΔN is induced during late osteoblast differentiation. This is converse to the expression pattern of the full‐length Lef1 protein, which as we previously showed, decreases during differentiation. Agonists of osteoblast maturation differentially affected Lef1ΔN expression. BMP2 stimulated Lef1ΔN expression, whereas Wnt3a blocked basal and BMP2‐induced expression of Lef1ΔN transcripts during osteoblast differentiation. We determined that the Lef1ΔN p2 promoter is active in osteoblasts and Runx2 regulates its activity. Stable overexpression of Lef1ΔN in differentiating osteoblasts induced the expression of osteoblast differentiation genes, osteocalcin and type 1 collagen. Taken together, our results suggest Lef1ΔN is a crucial regulator of terminal differentiation in osseous cells. J. Cell. Physiol. 221: 480–489, 2009.


Nucleic Acids Research | 2014

Non-metastatic 2 (NME2)-mediated suppression of lung cancer metastasis involves transcriptional regulation of key cell adhesion factor vinculin

Ram Krishna Thakur; Vinod Kumar Yadav; Akinchan Kumar; Ankita Singh; Krishnendu Pal; Luke H. Hoeppner; Dhurjhoti Saha; G.N. Purohit; Richa Basundra; Anirban Kar; Rashi Halder; Pankaj Kumar; Aradhita Baral; Mahesh Kumar; Alfonso Baldi; Bruno Vincenzi; Laura Lorenzon; Rajkumar Banerjee; Praveen Kumar; Viji Shridhar; Debabrata Mukhopadhyay; Shantanu Chowdhury

Tumor metastasis refers to spread of a tumor from site of its origin to distant organs and causes majority of cancer deaths. Although >30 metastasis suppressor genes (MSGs) that negatively regulate metastasis have been identified so far, two issues are poorly understood: first, which MSGs oppose metastasis in a tumor type, and second, which molecular function of MSG controls metastasis. Herein, integrative analyses of tumor-transcriptomes (n = 382), survival data (n = 530) and lymph node metastases (n = 100) in lung cancer patients identified non-metastatic 2 (NME2) as a key MSG from a pool of >30 metastasis suppressors. Subsequently, we generated a promoter-wide binding map for NME2 using chromatin immunoprecipitation with promoter microarrays (ChIP-chip), and transcriptome profiling. We discovered novel targets of NME2 which are involved in focal adhesion signaling. Importantly, we detected binding of NME2 in promoter of focal adhesion factor, vinculin. Reduced expression of NME2 led to enhanced transcription of vinculin. In comparison, NME1, a close homolog of NME2, did not bind to vinculin promoter nor regulate its expression. In line, enhanced metastasis of NME2-depleted lung cancer cells was found in zebrafish and nude mice tumor models. The metastatic potential of NME2-depleted cells was remarkably diminished upon selective RNA-i-mediated silencing of vinculin. Together, we demonstrate that reduced NME2 levels lead to transcriptional de-repression of vinculin and regulate lung cancer metastasis.


Journal of Biological Chemistry | 2011

Lef1ΔN Binds β-Catenin and Increases Osteoblast Activity and Trabecular Bone Mass

Luke H. Hoeppner; Frank J. Secreto; David F. Razidlo; Tiffany J. Whitney; Jennifer J. Westendorf

Lymphoid enhancer-binding factor (Lef) 1 is a high mobility group protein best known as a Wnt-responsive transcription factor that associates with β-catenin. Lef1ΔN is a short isoform of Lef1 that lacks the first 113 amino acids and a well characterized high affinity β-catenin binding domain present in the full-length protein. Both Lef1 isoforms bind DNA and regulate gene expression. We previously reported that Lef1 is expressed in proliferating osteoblasts and blocks osteocalcin expression. In contrast, Lef1ΔN is only detectable in the later stages of osteoblast differentiation and promotes osteogenesis in vitro. Here, we show that Lef1ΔN retains the ability to interact physically and functionally with β-catenin. Unlike what has been reported in T cells and colon cancer cell lines, Lef1ΔN activated gene transcription in the absence of exogenous β-catenin and cooperated with constitutively active β-catenin to stimulate gene transcription in mesenchymal and osteoblastic cells. Residues at the N terminus of Lef1ΔN were required for β-catenin binding and the expression of osteoblast differentiation genes. To determine the role of Lef1ΔN on bone formation in vivo, a Lef1ΔN transgene was expressed in committed osteoblasts using the 2.3-kb fragment of the type 1 collagen promoter. The Lef1ΔN transgenic mice had higher trabecular bone volume in the proximal tibias and L5 vertebrae. Histological analyses of tibial sections revealed no differences in osteoblast, osteoid, or osteoclast surface areas. However, bone formation and mineral apposition rates as well as osteocalcin levels were increased in Lef1ΔN transgenic mice. Together, our data indicate that Lef1ΔN binds β-catenin, stimulates Lef/Tcf reporter activity, and promotes terminal osteoblast differentiation.


Journal of Cellular Biochemistry | 2009

Co‐activator activator (CoAA) prevents the transcriptional activity of Runt domain transcription factors

Xiaodong Li; Luke H. Hoeppner; Eric D. Jensen; Rajaram Gopalakrishnan; Jennifer J. Westendorf

Runx proteins are essential for a number of developmental processes and are aberrantly expressed in many human cancers. Runx factors bind DNA and co‐factors to activate or repress genes crucial for bone formation, hematopoiesis, and neuronal development. Co‐activator activator (CoAA) is a nuclear protein that regulates gene expression, RNA splicing and is overexpressed in many human tumors. In this study, we identified CoAA as a Runx2 binding protein. CoAA repressed Runx factor‐dependent activation of reporter genes in a histone deacetylase‐independent manner. CoAA also blocked Runx2‐mediated repression of the Axin2 promoter, a novel Runx target gene. The carboxy‐terminus of CoAA is essential for binding the Runt domains of Runx1 and Runx2. In electophoretic mobility shift assays, CoAA inhibited Runx2 interactions with DNA. These data indicate that CoAA is an inhibitor of Runx factors and can negate Runx factor regulation of gene expression. CoAA is expressed at high levels in human fetal osteoblasts and osteosarcoma cell lines. Suppression of CoAA expression by RNA interference reduced osteosarcoma cell viability in vitro, suggesting that it contributes to the proliferation and/or survival of osteoblast lineage cells. J. Cell. Biochem. 108: 378–387, 2009.


Blood | 2012

Revealing the role of phospholipase Cβ3 in the regulation of VEGF-induced vascular permeability.

Luke H. Hoeppner; Kathryn N. Phoenix; Karl J. Clark; Resham Bhattacharya; Xun Gong; Tracey E. Sciuto; Pawan K. Vohra; Sandip Suresh; Santanu Bhattacharya; Ann M. Dvorak; Stephen C. Ekker; Harold F. Dvorak; Kevin P. Claffey; Debabrata Mukhopadhyay

VEGF induces vascular permeability (VP) in ischemic diseases and cancer, leading to many pathophysiological consequences. The molecular mechanisms by which VEGF acts to induce hyperpermeability are poorly understood and in vivo models that easily facilitate real-time, genetic studies of VP do not exist. In the present study, we report a heat-inducible VEGF transgenic zebrafish (Danio rerio) model through which VP can be monitored in real time. Using this approach with morpholino-mediated gene knock-down and knockout mice, we describe a novel role of phospholipase Cβ3 as a negative regulator of VEGF-mediated VP by regulating intracellular Ca2+ release. Our results suggest an important effect of PLCβ3 on VP and provide a new model with which to identify genetic regulators of VP crucial to several disease processes.


Molecular Oncology | 2015

Dopamine D2 receptor agonists inhibit lung cancer progression by reducing angiogenesis and tumor infiltrating myeloid derived suppressor cells

Luke H. Hoeppner; Ying Wang; Anil K. Sharma; Naureen Javeed; Virginia Van Keulen; Enfeng Wang; Ping Yang; Anja C. Roden; Tobias Peikert; Julian R. Molina; Debabrata Mukhopadhyay

We sought to determine whether Dopamine D2 Receptor (D2R) agonists inhibit lung tumor progression and identify subpopulations of lung cancer patients that benefit most from D2R agonist therapy. We demonstrate D2R agonists abrogate lung tumor progression in syngeneic (LLC1) and human xenograft (A549) orthotopic murine models through inhibition of tumor angiogenesis and reduction of tumor infiltrating myeloid derived suppressor cells. Pathological examination of human lung cancer tissue revealed a positive correlation between endothelial D2R expression and tumor stage. Lung cancer patients with a smoking history exhibited greater levels of D2R in lung endothelium. Our results suggest D2R agonists may represent a promising individualized therapy for lung cancer patients with high levels of endothelial D2R expression and a smoking history.


American Journal of Physiology-lung Cellular and Molecular Physiology | 2012

Dopamine inhibits pulmonary edema through the VEGF-VEGFR2 axis in a murine model of acute lung injury

Pawan K. Vohra; Luke H. Hoeppner; Gunisha Sagar; Shamit K. Dutta; Sanjay Misra; Rolf D. Hubmayr; Debabrata Mukhopadhyay

The neurotransmitter dopamine and its dopamine receptor D2 (D2DR) agonists are known to inhibit vascular permeability factor/vascular endothelial growth factor (VEGF)-mediated angiogenesis and vascular permeability. Lung injury is a clinical syndrome associated with increased microvascular permeability. However, the effects of dopamine on pulmonary edema, a phenomenon critical to the pathophysiology of both acute and chronic lung injuries, have yet to be established. Therefore, we sought to determine the potential therapeutic effects of dopamine in a murine model of lipopolysaccharide (LPS)-induced acute lung injury (ALI). Compared with sham-treated controls, pretreatment with dopamine (50 mg/kg body wt) ameliorated LPS-mediated edema formation and lowered myeloperoxidase activity, a measure of neutrophil infiltration. Moreover, dopamine significantly increased survival rates of LPS-treated mice, from 0-75%. Mechanistically, we found that dopamine acts through the VEGF-VEGFR2 axis to reduce pulmonary edema, as dopamine pretreatment in LPS-treated mice resulted in decreased serum VEGF, VEGFR2 phosphorylation, and endothelial nitric oxide synthase phosphorylation. We used D2DR knockout mice to confirm that dopamine acts through D2DR to block vascular permeability in our lung injury model. As expected, a D2DR agonist failed to reduce pulmonary edema in D2DR(-/-) mice. Taken together, our results suggest that dopamine acts through D2DR to inhibit pulmonary edema-associated vascular permeability, which is mediated through VEGF-VEGFR2 signaling and conveys protective effects in an ALI model.

Collaboration


Dive into the Luke H. Hoeppner's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Resham Bhattacharya

University of Oklahoma Health Sciences Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge