Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Luke Hughes-Davies is active.

Publication


Featured researches published by Luke Hughes-Davies.


Nature Genetics | 2000

DNA methyltransferase Dnmt1 associates with histone deacetylase activity

François Fuks; Wendy A. Burgers; Alexander Brehm; Luke Hughes-Davies; Tony Kouzarides

The DNA methyltransferase Dnmt1 is responsible for cytosine methylation in mammals and has a role in gene silencing. DNA methylation represses genes partly by recruitment of the methyl-CpG-binding protein MeCP2, which in turn recruits a histone deacetylase activity. Here we show that Dnmt1 is itself associated with histone deacetylase activity in vivo. Consistent with this association, we find that one of the known histone deacetylases, HDAC1, has the ability to bind Dnmt1 and can purify methyltransferase activity from nuclear extracts. We have identified a transcriptional repression domain in Dnmt1 that functions, at least partly, by recruiting histone deacetylase activity and shows homology to the repressor domain of the trithorax-related protein HRX (also known as MLL and ALL-1). Our data show a more direct connection between DNA methylation and histone deacetylation than was previously considered. We suggest that the process of DNA methylation, mediated by Dnmt1, may depend on or generate an altered chromatin state via histone deacetylase activity.


Cell | 2003

EMSY Links the BRCA2 Pathway to Sporadic Breast and Ovarian Cancer

Luke Hughes-Davies; David Huntsman; Margarida Ruas; Francois Fuks; Jacqueline M. Bye; Suet-Feung Chin; Jonathon Milner; Lindsay Brown; Forrest D. Hsu; Blake Gilks; Torsten O. Nielsen; Michael Schulzer; Stephen Chia; Joseph Ragaz; Anthony P. Cahn; Lori Linger; Hilal Ozdag; Ekaterina S. Jordanova; Edward Schuuring; David S. Yu; Ashok R. Venkitaraman; Bruce A.J. Ponder; Aidan J. Doherty; Samuel Aparicio; David R. Bentley; Charles Theillet; Chris P. Ponting; Carlos Caldas; Tony Kouzarides

The BRCA2 gene is mutated in familial breast and ovarian cancer, and its product is implicated in DNA repair and transcriptional regulation. Here we identify a protein, EMSY, which binds BRCA2 within a region (exon 3) deleted in cancer. EMSY is capable of silencing the activation potential of BRCA2 exon 3, associates with chromatin regulators HP1beta and BS69, and localizes to sites of repair following DNA damage. EMSY maps to chromosome 11q13.5, a region known to be involved in breast and ovarian cancer. We show that the EMSY gene is amplified almost exclusively in sporadic breast cancer (13%) and higher-grade ovarian cancer (17%). In addition, EMSY amplification is associated with worse survival, particularly in node-negative breast cancer, suggesting that it may be of prognostic value. The remarkable clinical overlap between sporadic EMSY amplification and familial BRCA2 deletion implicates a BRCA2 pathway in sporadic breast and ovarian cancer.


Lancet Oncology | 2014

Effects of the addition of gemcitabine, and paclitaxel-first sequencing, in neoadjuvant sequential epirubicin, cyclophosphamide, and paclitaxel for women with high-risk early breast cancer (Neo-tAnGo): an open-label, 2×2 factorial randomised phase 3 trial

Helena M. Earl; Anne-Laure Vallier; Louise Hiller; Nicola Fenwick; Jennie Young; Mahesh Iddawela; Jean Abraham; Luke Hughes-Davies; Ioannis Gounaris; Karen McAdam; Stephen Houston; Tamas Hickish; Anthony Skene; Stephen Chan; Susan Dean; Diana Ritchie; Robert Laing; Mark Harries; J. Christopher Gallagher; G.C. Wishart; Janet A. Dunn; Elena Provenzano; Carlos Caldas

BACKGROUND Anthracyclines and taxanes have been the standard neoadjuvant chemotherapies for breast cancer in the past decade. We aimed to assess safety and efficacy of the addition of gemcitabine to accelerated paclitaxel with epirubicin and cyclophosphamide, and also the effect of sequencing the blocks of epirubicin and cyclophosphamide and paclitaxel (with or without gemcitabine). METHODS In our randomised, open-label, 2×2 factorial phase 3 trial (Neo-tAnGo), we enrolled women (aged >18 years) with newly diagnosed breast cancer (tumour size >20 mm) at 57 centres in the UK. Patients were randomly assigned via a central randomisation procedure to epirubicin and cyclophosphamide then paclitaxel (with or without gemcitabine) or paclitaxel (with or without gemcitabine) then epirubicin and cyclophosphamide. Four cycles of each component were given. The primary endpoint was pathological complete response (pCR), defined as absence of invasive cancer in the breast and axillary lymph nodes. This study is registered with EudraCT (2004-002356-34), ISRCTN (78234870), and ClinicalTrials.gov (NCT00070278). FINDINGS Between Jan 18, 2005, and Sept 28, 2007, we randomly allocated 831 participants; 207 received epirubicin and cyclophosphamide then paclitaxel; 208 were given paclitaxel then epirubicin and cyclophosphamide; 208 had epirubicin and cyclophosphamide followed by paclitaxel and gemcitabine; and 208 received paclitaxel and gemcitabine then epirubicin and cyclophosphamide. 828 patients were eligible for analysis. Median follow-up was 47 months (IQR 37-51). 207 (25%) patients had inflammatory or locally advanced disease, 169 (20%) patients had tumours larger than 50 mm, 413 (50%) patients had clinical involvement of axillary nodes, 276 (33%) patients had oestrogen receptor (ER)-negative disease, and 191 (27%) patients had HER2-positive disease. Addition of gemcitabine did not increase pCR: 70 (17%, 95% CI 14-21) of 404 patients in the epirubicin and cyclophosphamide then paclitaxel group achieved pCR compared with 71 (17%, 14-21) of 408 patients who received additional gemcitabine (p=0·98). Receipt of a taxane before anthracycline was associated with improved pCR: 82 (20%, 95% CI 16-24) of 406 patients who received paclitaxel with or without gemcitabine followed by epirubicin and cyclophosphamide achieved pCR compared with 59 (15%, 11-18) of 406 patients who received epirubicin and cyclophosphamide first (p=0·03). Grade 3 toxicities were reported at expected levels: 173 (21%) of 812 patients who received treatment and had full treatment details had grade 3 neutropenia, 66 (8%) had infection, 41 (5%) had fatigue, 41 (5%) had muscle and joint pains, 37 (5%) had nausea, 36 (4%) had vomiting, 34 (4%) had neuropathy, 23 (3%) had transaminitis, 16 (2%) had acute hypersensitivity, and 20 (2%) had a rash. 86 (11%) patients had grade 4 neutropenia and 3 (<1%) had grade 4 infection. INTERPRETATION Although addition of gemcitabine to paclitaxel and epirubicin and cyclophosphamide chemotherapy does not improve pCR, sequencing chemotherapy so that taxanes are received before anthracyclines could improve pCR in standard neoadjuvant chemotherapy for breast cancer. FUNDING Cancer Research UK, Eli Lilly, Bristol-Myers Squibb.


Clinical Cancer Research | 2004

Amplification of the BRCA2 Pathway Gene EMSY in Sporadic Breast Cancer Is Related to Negative Outcome

Carmen Rodríguez; Luke Hughes-Davies; Hélène Vallès; Béatrice Orsetti; Marguerite Cuny; Lisa Ursule; Tony Kouzarides; Charles Theillet

DNA amplification at band q13 of chromosome 11 is common in breast cancer, and CCND1 and EMS1 remain the strongest candidate genes. However, amplification patterns are consistent with the existence of four cores of amplification, suggesting the involvement of additional genes. Here we present evidence strongly suggesting the involvement of the recently characterized EMSY gene in the formation of the telomeric amplicon. EMSY maps at 11q13.5, 100 kb centromeric to the GARP gene, which has been mapped within the core of the distal amplicon. The EMSY protein was shown to interact with BRCA2 and has a role in chromatin remodeling. This makes EMSY a strong candidate oncogene for the 11q13.5 amplicon. DNA amplification was studied in a total of 940 primary breast tumors and 39 breast cancer cell lines. Amplification profiles were consistent with the EMSY-GARP locus being amplified independently of CCND1 and/or EMS1. EMSY RNA expression levels were studied along with those of five other genes located at 11q13.5 by real-time quantitative PCR in the 39 cell lines and a subset of 65 tumors. EMSY overexpression correlated strongly with DNA amplification in both primary tumors and cell lines. In a subset of 296 patients, EMSY amplification was found by both uni- and multivariate analyses to correlate with shortened disease-free survival. These data indicate that EMSY is a strong candidate oncogene for the 11q13.5 amplicon.


Lancet Oncology | 2015

Efficacy of neoadjuvant bevacizumab added to docetaxel followed by fluorouracil, epirubicin, and cyclophosphamide, for women with HER2-negative early breast cancer (ARTemis): an open-label, randomised, phase 3 trial

Helena M. Earl; Louise Hiller; Janet A. Dunn; Clare Blenkinsop; Louise Grybowicz; Anne-Laure Vallier; Jean Abraham; Jeremy Thomas; Elena Provenzano; Luke Hughes-Davies; Ioannis Gounaris; Karen McAdam; Stephen Chan; Rizvana Ahmad; Tamas Hickish; Stephen Houston; Daniel Rea; John M. S. Bartlett; Carlos Caldas; David Cameron; Larry Hayward

BACKGROUND The ARTemis trial was developed to assess the efficacy and safety of adding bevacizumab to standard neoadjuvant chemotherapy in HER2-negative early breast cancer. METHODS In this randomised, open-label, phase 3 trial, we enrolled women (≥18 years) with newly diagnosed HER2-negative early invasive breast cancer (radiological tumour size >20 mm, with or without axillary involvement), at 66 centres in the UK. Patients were randomly assigned via a central computerised minimisation procedure to three cycles of docetaxel (100 mg/m(2) once every 21 days) followed by three cycles of fluorouracil (500 mg/m(2)), epirubicin (100 mg/m(2)), and cyclophosphamide (500 mg/m(2)) once every 21 days (D-FEC), without or with four cycles of bevacizumab (15 mg/kg) (Bev+D-FEC). The primary endpoint was pathological complete response, defined as the absence of invasive disease in the breast and axillary lymph nodes, analysed by intention to treat. The trial has completed and follow-up is ongoing. This trial is registered with EudraCT (2008-002322-11), ISRCTN (68502941), and ClinicalTrials.gov (NCT01093235). FINDINGS Between May 7, 2009, and Jan 9, 2013, we randomly allocated 800 participants to D-FEC (n=401) and Bev+D-FEC (n=399). 781 patients were available for the primary endpoint analysis. Significantly more patients in the bevacizumab group achieved a pathological complete response compared with those treated with chemotherapy alone: 87 (22%, 95% CI 18-27) of 388 patients in the Bev+D-FEC group compared with 66 (17%, 13-21) of 393 patients in the D-FEC group (p=0·03). Grade 3 and 4 toxicities were reported at expected levels in both groups, although more patients had grade 4 neutropenia in the Bev+D-FEC group than in the D-FEC group (85 [22%] vs 68 [17%]). INTERPRETATION Addition of four cycles of bevacizumab to D-FEC in HER2-negative early breast cancer significantly improved pathological complete response. However, whether the improvement in pathological complete response will lead to improved disease-free and overall survival outcomes is unknown and will be reported after longer follow-up. Meta-analysis of available neoadjuvant trials is likely to be the only way to define subgroups of early breast cancer that would have clinically significant long-term benefit from bevacizumab treatment. FUNDING Cancer Research UK, Roche, Sanofi-Aventis.


Journal of the National Cancer Institute | 2016

Comparing Breast Cancer Multiparameter Tests in the OPTIMA Prelim Trial: No Test Is More Equal Than the Others

John M.S. Bartlett; Jane Bayani; Andrea Marshall; Janet A. Dunn; Amy F Campbell; Carrie Cunningham; Monika Sobol; Peter Hall; Christopher J. Poole; David Cameron; Helena M. Earl; Daniel Rea; Iain R. Macpherson; Peter Canney; Adele Francis; Christopher McCabe; Sarah Pinder; Luke Hughes-Davies; Andreas Makris; Robert Stein

BACKGROUND Previous reports identifying discordance between multiparameter tests at the individual patient level have been largely attributed to methodological shortcomings of multiple in silico studies. Comparisons between tests, when performed using actual diagnostic assays, have been predicted to demonstrate high degrees of concordance. OPTIMA prelim compared predicted risk stratification and subtype classification of different multiparameter tests performed directly on the same population. METHODS Three hundred thirteen women with early breast cancer were randomized to standard (chemotherapy and endocrine therapy) or test-directed (chemotherapy if Oncotype DX recurrence score >25) treatment. Risk stratification was also determined with Prosigna (PAM50), MammaPrint, MammaTyper, NexCourse Breast (IHC4-AQUA), and conventional IHC4 (IHC4). Subtype classification was provided by Blueprint, MammaTyper, and Prosigna. RESULTS Oncotype DX predicted a higher proportion of tumors as low risk (82.1%, 95% confidence interval [CI] = 77.8% to 86.4%) than were predicted low/intermediate risk using Prosigna (65.5%, 95% CI = 60.1% to 70.9%), IHC4 (72.0%, 95% CI = 66.5% to 77.5%), MammaPrint (61.4%, 95% CI = 55.9% to 66.9%), or NexCourse Breast (61.6%, 95% CI = 55.8% to 67.4%). Strikingly, the five tests showed only modest agreement when dichotomizing results between high vs low/intermediate risk. Only 119 (39.4%) tumors were classified uniformly as either low/intermediate risk or high risk, and 183 (60.6%) were assigned to different risk categories by different tests, although 94 (31.1%) showed agreement between four of five tests. All three subtype tests assigned 59.5% to 62.4% of tumors to luminal A subtype, but only 121 (40.1%) were classified as luminal A by all three tests and only 58 (19.2%) were uniformly assigned as nonluminal A. Discordant subtyping was observed in 123 (40.7%) tumors. CONCLUSIONS Existing evidence on the comparative prognostic information provided by different tests suggests that current multiparameter tests provide broadly equivalent risk information for the population of women with estrogen receptor (ER)-positive breast cancers. However, for the individual patient, tests may provide differing risk categorization and subtype information.


Clinical Oncology | 2013

Selecting breast cancer patients for chemotherapy: the opening of the UK OPTIMA trial.

Jms Bartlett; Peter Canney; A. M. Campbell; David Cameron; Jenny Donovan; Janet A. Dunn; Helena M. Earl; Adele Francis; Peter Hall; V. Harmer; Helen B Higgins; L. Hillier; Claire Hulme; Luke Hughes-Davies; Andreas Makris; Adrienne Morgan; Christopher McCabe; Sarah Pinder; Christopher J. Poole; D. Rea; Nigel Stallard; Robert Stein

The mortality from breast cancer has improved steadily over the past two decades, in part because of the increased use of more effective adjuvant therapies. Thousands of women are routinely treated with intensive chemotherapy, which can be unpleasant, is expensive and is occasionally hazardous. Oncologists have long known that some of these women may not need treatment, either because they have a low risk of relapse or because they have tumour biology that makes them less sensitive to chemotherapy and more suitable for early adjuvant endocrine therapy. There is an urgent need to improve patient selection so that chemotherapy is restricted to those patients who will benefit from it. Here we review the emerging technologies that are available for improving patient selection for chemotherapy. We describe the OPTIMA trial, which has just opened to recruitment in the UK, is the latest addition to trials in this area, and is the first to focus on the relative cost-effectiveness of alternate predictive assays.


British Journal of Cancer | 2009

Tamoxifen: the drug that came in from the cold

Luke Hughes-Davies; Carlos Caldas; G.C. Wishart

Despite the perception of many oncologists that tamoxifen is an inferior drug, and should be substituted by an aromatase inhibitor in post-menopausal women, the current evidence strongly supports the view that AIs should be used 2–3 years after tamoxifen to achieve the maximal overall survival (OS) advantage.


Molecular Cancer | 2010

BEX2 has a functional interplay with c-Jun/JNK and p65/RelA in breast cancer

Ali Naderi; Ji Liu; Luke Hughes-Davies

BackgroundWe have previously demonstrated that BEX2 is differentially expressed in breast tumors and has a significant role in promoting cell survival and growth in breast cancer cells. BEX2 expression protects breast cancer cells against mitochondrial apoptosis and G1 cell cycle arrest. In this study we investigated the transcriptional regulation of BEX2 and feedback mechanisms mediating the cellular function of this gene in breast cancer.ResultsWe found a marked induction of BEX2 promoter by c-Jun and p65/RelA using luciferase reporter assays in MCF-7 cells. Furthermore, we confirmed the binding of c-Jun and p65/RelA to the BEX2 promoter using a chromatin immunoprecipitation assay. Importantly, transfections of c-Jun or p65/RelA in MCF-7 cells markedly increased the expression of BEX2 protein. Overall, these results demonstrate that BEX2 is a target gene for c-Jun and p65/RelA in breast cancer. These findings were further supported by the presence of a strong correlation between BEX2 and c-Jun expression levels in primary breast tumors. Next we demonstrated that BEX2 has a feedback mechanism with c-Jun and p65/RelA in breast cancer. In this process BEX2 expression is required for the normal phosphorylation of p65 and IκBα, and the activation of p65. Moreover, it is necessary for the phosphorylation of c-Jun and JNK kinase activity in breast cancer cells. Furthermore, using c-Jun stable lines we showed that BEX2 expression is required for c-Jun mediated induction of cyclin D1 and cell proliferation. Importantly, BEX2 down-regulation resulted in a significant increase in PP2A activity in c-Jun stable lines providing a possible underlying mechanism for the regulatory effects of BEX2 on c-Jun and JNK.ConclusionsThis study shows that BEX2 has a functional interplay with c-Jun and p65/RelA in breast cancer. In this process BEX2 is a target gene for c-Jun and p65/RelA and in turn regulates the phosphorylation/activity of these proteins. These suggest that BEX2 is involved in a novel feedback mechanism with significant implications for the biology of breast cancer.


Oncogene | 2000

The BRCA2 activation domain associates with and is phosphorylated by a cellular protein kinase

Jonathan Milner; François Fuks; Luke Hughes-Davies; Tony Kouzarides

A substantial proportion of familial breast cancers have mutations within the BRCA2 gene. The product of this gene has been implicated in DNA repair and in the regulation of transcription. We have previously identified at the amino-terminus of BRCA2 a transcriptional activation domain whose importance is highlighted by the presence of predisposing mutations and in-frame deletions in breast cancer families. This activation domain shows sequence similarity to a region of c-Jun which has been defined as a binding site for the c-Jun N-terminal kinase. Here, we show that the analogous region in BRCA2 is also a binding site for a cellular kinase, although this kinase is distinct from JNK. The BRCA2 associated enzyme is able to phosphorylate residues within the BRCA2 activation domain. Consistent with this observation, we find that the activation domain of BRCA2 is phosphorylated in vivo. Our results indicate that the BRCA2 activation domain possesses a binding site for a kinase that may regulate BRCA2 activity by phosphorylation.

Collaboration


Dive into the Luke Hughes-Davies's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert Stein

University College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David Cameron

Western General Hospital

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge