Luke T. Tolley
Southern Illinois University Carbondale
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Luke T. Tolley.
Journal of Chromatography A | 2015
Sonika Sharma; Luke T. Tolley; H. Dennis Tolley; Alex Plistil; Stanley D. Stearns; Milton L. Lee
Over the last four decades, liquid chromatography (LC) has experienced an evolution to smaller columns and particles, new stationary phases and low flow rate instrumentation. However, the development of person-portable LC has not followed, mainly due to difficulties encountered in miniaturizing pumps and detectors, and in reducing solvent consumption. The recent introduction of small, non-splitting pumping systems and UV-absorption detectors for use with capillary columns has finally provided miniaturized instrumentation suitable for high-performance hand-portable LC. Fully integrated microfabricated LC still remains a significant challenge. Ion chromatography (IC) has been successfully miniaturized and applied for field analysis; however, applications are mostly limited to inorganic and small organic ions. This review covers advancements that make possible more rapid expansion of portable forms of LC and IC.
Drug Design Development and Therapy | 2011
Zeyad A. Al-Talla; Sabah H Akrawi; Luke T. Tolley; Salim Sioud; Mohammed F Zaater; Abdul-Hamid Emwas
Background: This study assessed the relative bioavailability of two formulations of ibuprofen. The first formulation was Doloraz®, produced by Al-Razi Pharmaceutical Company, Amman, Jordan. The second forumulation was Brufen®, manufactured by Boots Company, Nottingham, UK. Methods and results: A prestudy validation of ibuprofen demonstrated long-term stability, freeze-thaw stability, precision, and accuracy. Twenty-four healthy volunteers were enrolled in this study. After overnight fasting, the two formulations (test and reference) of ibuprofen (100 mg ibuprofen/5 mL suspension) were administered as a single dose on two treatment days separated by a one-week washout period. After dosing, serial blood samples were drawn for a period of 14 hours. Serum harvested from the blood samples was analyzed for the presence of ibuprofen by high-pressure liquid chromatography with ultraviolet detection. Pharmacokinetic parameters were determined from serum concentrations for both formulations. The 90% confidence intervals of the ln-transformed test/reference treatment ratios for peak plasma concentration and area under the concentration-time curve (AUC) parameters were found to be within the predetermined acceptable interval of 80%–125% set by the US Food and Drug Administration. Conclusion: Analysis of variance for peak plasma concentrations and AUC parameters showed no significant difference between the two formulations and, therefore, Doloraz was considered bioequivalent to Brufen.
Analytical Chemistry | 2017
Xiaofeng Zhao; Xiaofeng Xie; Sonika Sharma; Luke T. Tolley; Alex Plistil; Hal E. Barnett; Martin Brisbin; Adam C. Swensen; John C. Price; Paul B. Farnsworth; H. Dennis Tolley; Stanley D. Stearns; Milton L. Lee
A compact ultrahigh-pressure nanoflow liquid chromatograph (LC) was developed with the purpose in mind of creating a portable system that could be easily moved to various testing locations or placed in close proximity to other instruments for optimal coupling, such as with mass spectrometry (MS). The system utilized innovative nanoflow pumps integrated with a very low volume stop-flow injector and mixing tee. The system weighed only 5.9 kg (13 lbs) or 4.5 kg (10 lbs) without a controller and could hold up to 1100 bar (16000 psi) of pressure. The total volume pump capacity was 60 μL. In this study, the sample injection volume was determined by either a 60 nL internal sample groove machined in a high-pressure valve rotor or by a 1 μL external sample loop, although other sample grooves or loops could be selected. The gradient dwell volume was approximately 640 nL, which allowed significant reduction in sample analysis time. Gradient performance was evaluated by determining the gradient step accuracy. A low RSD (0.6%, n = 4) was obtained for day-to-day experiments. Linear gradient reproducibility was evaluated by separating a three-component polycyclic aromatic hydrocarbon mixture on a commercial 150 μm inner diameter capillary column packed with 1.7 μm particles. Good retention-time reproducibility (RSD < 0.17%) demonstrated that the pumping system could successfully generate ultrahigh pressures for use in capillary LC. The system was successfully coupled to an LTQ Orbitrap MS in a simple and efficient way; LC-MS of a trypsin-digested bovine serum albumin (BSA) sample provided narrow peaks, short dwell time, and good peptide coverage.
Journal of Proteome Research | 2008
Robbie Montgomery; Hanna Shay; Matthew E. McCarroll; Luke T. Tolley
Dynamic isoelectric/anisotropy binding ligand assay (DIABLA) is a new method to identify proteins in a complex sample that bind to a molecule of interest. This is accomplished by first using capillary isoelectric focusing (cIEF) to separate the proteins in a capillary based on their isoelectric point. This separation is performed while the compound being tested is present in the separation buffer. When the proteins are focused, the entire capillary is scanned to identify regions of nonzero anisotropy, which are locations where the test compound is interacting with a focused protein band. DIABLA was demonstrated by observing the binding of fluorescein-tagged progesterone to an MCF-7 breast cancer cell lysate. The proteins were tagged with rhodamine to permit their observation and then focused in the presence of the tagged progesterone. Anisotropy measurements show that progesterone binds to six different proteins bands in the sample.
Journal of Fluorescence | 2013
Lin Wang; Brendan Clifford; Lacey Graybeal; Luke T. Tolley; Matthew E. McCarroll
Understanding molecular interactions is critical to understanding most biological mechanisms of cells and organisms. In the case of small molecule–protein interactions, many molecules have significant biological activity through interactions with unknown target proteins and by unknown modes of action. Identifying these target proteins is of significant importance and ongoing work in our laboratories is developing a technique termed Dynamic Isoelectric Anisotropy Binding Ligand Assay (DIABLA) to meet this need. Work presented in this manuscript aims to characterize the fundamental parameters affecting the use of fluorescence anisotropy to detect target proteins for a given ligand. Emphasis is placed on evaluating the use of fluorescence anisotropy as a detection mechanism, including optimization factors that affect the protein detection limit. Effects of ligand concentration, pH, and nonspecific binding are also examined.
Journal of Chromatography A | 2017
Xiaofeng Xie; Luke T. Tolley; Thy X. Truong; H. Dennis Tolley; Paul B. Farnsworth; Milton L. Lee
The design of a miniaturized LED-based UV-absorption detector was significantly improved for on-column nanoflow LC. The detector measures approximately 27mm×24mm×10mm and weighs only 30g. Detection limits down to the nanomolar range and linearity across 3 orders of magnitude were obtained using sodium anthraquinone-2-sulfonate as a test analyte. Using two miniaturized detectors, a dual-detector system was assembled containing 255nm and 275nm LEDs with only 216nL volume between the detectors A 100μm slit was used for on-column detection with a 150μm i.d. packed capillary column. Chromatographic separation of a phenol mixture was demonstrated using the dual-detector system, with each detector producing a unique chromatogram. Less than 6% variation in the ratios of absorbances measured at the two wavelengths for specific analytes was obtained across 3 orders of magnitude concentration, which demonstrates the potential of using absorption ratio measurements for target analyte detection. The dual-detector system was used for simple, but accurate, mobile phase flow rate measurement at the exit of the column. With a flow rate range from 200 to 2000nL/min, less than 3% variation was observed.
Analytical Chemistry | 2001
Luke T. Tolley; and James W. Jorgenson; M. Arthur Moseley
Journal of Chromatography A | 2005
Stephen E. Johnston; Keith Fadgen; Luke T. Tolley; James W. Jorgenson
Analytical Chemistry | 2006
Robbie Montgomery; Xuegang Jia; Luke T. Tolley
Archive | 2001
James W. Jorgenson; Keith Fadgen; Luke T. Tolley