Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lukman O. Olasunkanmi is active.

Publication


Featured researches published by Lukman O. Olasunkanmi.


RSC Advances | 2015

L-Proline-promoted synthesis of 2-amino-4-arylquinoline-3-carbonitriles as sustainable corrosion inhibitors for mild steel in 1 M HCl: experimental and computational studies

Chandrabhan Verma; M.A. Quraishi; Lukman O. Olasunkanmi; Eno E. Ebenso

The inhibition of mild steel corrosion in 1 M HCl by 2-amino-4-(4-nitrophenyl) quinoline-3-carbonitrile (AAC-1), 2-amino-4-phenylquinoline-3-carbonitrile (AAC-2) and 2-amino-4-(4-hydroxyphenyl) quinoline-3-carbonitrile (AAC-3) has been investigated using weight loss, electrochemical (potentiodynamic polarization and electrochemical impedance spectroscopy (EIS)), surface (SEM, EDX and AFM) and quantum chemical calculation methods. The results indicated that the investigated inhibitors exhibited good inhibition efficiency against the corrosion of mild steel in acidic solution. The weight loss and electrochemical results suggested that inhibition efficiencies were enhanced with an increase in the concentration of 2-amino-4-arylquinoline-3-carbonitriles (AACs). The results showed that the inhibition efficiencies of the investigated AACs obeyed the order: AAC-3 (96.52%), AAC-2 (95.65%) and AAC-1 (94.78%). Potentiodynamic polarization study revealed that the investigated AACs act as cathodic type inhibitors. Adsorption of the AACs on a mild steel surface obeyed the Langmuir adsorption isotherm. Furthermore, SEM, EDX and AFM studies clearly revealed the film-forming ability of AACs on the mild steel surface. Quantum chemical calculations were undertaken to provide mechanistic insight into the mechanism of inhibition action of AACs. On the basis of experimental and theoretical studies it was concluded that the presence of electron releasing hydroxyl (–OH) groups in AAC-3 increases the inhibition efficiency whereas electron withdrawing nitro (–NO2) groups in AAC-1 decrease the inhibition efficiency.


RSC Advances | 2016

5-Arylpyrimido-[4,5-b]quinoline-diones as new and sustainable corrosion inhibitors for mild steel in 1 M HCl: a combined experimental and theoretical approach

Chandrabhan Verma; Lukman O. Olasunkanmi; I.B. Obot; Eno E. Ebenso; M.A. Quraishi

The inhibition of mild steel corrosion in 1 M HCl by four 5-arylpyrimido-[4,5-b]quinoline-diones (APQDs), namely 5-(4-nitrophenyl)-5,10-dihydropyrimido [4,5-b]quinoline-2,4(1H,3H)-dione (APQD-1), 5-phenyl-5,10-dihydropyrimido[4,5-b]quinoline-2,4(1H,3H)-dione (APQD-2), 5-(4-hydroxyphenyl)-5,10-dihydropyrimido[4,5-b]quinoline-2,4(1H,3H)-dione (APQD-3) and 5-(2,4-dihydroxyphenyl)-5,10-dihydropyrimido[4,5-b]quinoline-2,4(1H,3H)-dione (APQD-4) has been investigated using weight loss, electrochemical, surface, and quantum chemical calculations and molecular dynamics simulation methods. The results showed that the inhibition efficiency (η%) increased with increasing concentration of the inhibitors. Among the studied compounds, APQD-4 exhibited the highest inhibition efficiency of 98.30% at 20 mg l−1 concentration. The studied compounds effectively retarded the corrosion of mild steel in 1 M HCl by adsorbing onto the steel surface, and the adsorption data conformed to the Langmuir adsorption isotherm. The results of potentiodynamic polarization measurements revealed that the studied compounds are cathodic-type inhibitors. Scanning electron microscopy (SEM) study confirmed the formation of adsorbed films of the inhibitor molecules on the steel surface. Quantum chemical calculations and molecular dynamics simulations were undertaken to corroborate experimental findings and provide adequate insight into the corrosion inhibition mechanisms and adsorption characteristics of the studied compounds.


RSC Advances | 2016

2,4-Diamino-5-(phenylthio)-5H-chromeno [2,3-b] pyridine-3-carbonitriles as green and effective corrosion inhibitors: gravimetric, electrochemical, surface morphology and theoretical studies

Chandrabhan Verma; Lukman O. Olasunkanmi; I.B. Obot; Eno E. Ebenso; M.A. Quraishi

The inhibition of mild steel corrosion in 1 M HCl by three newly synthesized 2,4-diamino-5-(phenylthio)-5H-chromeno[2,3-b]pyridine-3-carbonitriles (DHPCs) namely, 2,4-diamino-7-nitro-5-(phenylthio)-5H-chromeno[2,3-b]pyridine-3-carbonitrile (DHPC-1), 2,4-diamino-5-(phenylthio)-5H-chromeno[2,3-b]pyridine-3-carbonitrile (DHPC-2) and 2,4-diamino-7-hydroxy-5-(phenylthio)-5H-chromeno[2,3-b]pyridine-3-carbonitrile (DHPC-3) was studied using weight loss method, electrochemical techniques, surface morphology (SEM, AFM) studies and theoretical (quantum chemical calculations and molecular dynamic simulation) methods. The weight loss and electrochemical measurements showed that the inhibition efficiency increases with increasing inhibitor concentration and the relative trend of inhibition performance is DHPC-3 > DHPC-2 > DHPC-1. A potentiodynamic polarization study reveals that the investigated DHPCs act as mixed type inhibitors. The adsorption of the DHPCs on the mild steel surface obeys the Langmuir adsorption isotherm and involves both physisorption and chemisorption modes. The presence of the electron releasing –OH group at position seven on the chromenopyridine ring is considered to be responsible for the highest inhibition efficiency of DHPC-3 among the studied compounds. Whereas the presence of the electron withdrawing nitro (–NO2) group at position seven on the chromenopyridine ring is responsible for the lowest inhibitive strength of DHPC-1. Quantum chemical calculations and molecular dynamic simulation studies were undertaken to provide mechanistic insight into the roles of the different substituents (–OH and –NO2) on the corrosion inhibition behavior of the studied inhibitors.


Materials | 2015

Adsorption, Thermodynamic and Quantum Chemical Studies of 1-hexyl-3-methylimidazolium Based Ionic Liquids as Corrosion Inhibitors for Mild Steel in HCl

Motsie E. Mashuga; Lukman O. Olasunkanmi; Abolanle S. Adekunle; Sasikumar Yesudass; Mwombeki Mwadham Kabanda; Eno E. Ebenso

The inhibition of mild steel corrosion in 1 M HCl solution by some ionic liquids (ILs) namely, 1-hexyl-3-methylimidazolium trifluoromethanesulfonate [HMIM][TfO], 1-hexyl-3-methylimidazolium tetrafluoroborate [HMIM][BF4], 1-hexyl-3-methylimidazolium hexafluorophosphate [HMIM][PF6], and 1-hexyl-3-methylimidazolium iodide [HMIM][I] was investigated using electrochemical measurements, spectroscopic analyses and quantum chemical calculations. All the ILs showed appreciably high inhibition efficiency. At 303 K, the results of electrochemical measurements indicated that the studied ILs are mixed-type inhibitors. The adsorption studies showed that all the four ILs adsorb spontaneously on steel surface with [HMIM][TfO], [HMIM][BF4] and [HMIM][I] obeying Langmuir adsorption isotherm, while [HMIM][PF6] conformed better with Temkin adsorption isotherm. Spectroscopic analyses suggested the formation of Fe/ILs complexes. Some quantum chemical parameters were calculated to corroborate experimental results.


RSC Advances | 2015

Synthesized photo-cross-linking chalcones as novel corrosion inhibitors for mild steel in acidic medium: experimental, quantum chemical and Monte Carlo simulation studies

Baskar Ramaganthan; Mayakrishnan Gopiraman; Lukman O. Olasunkanmi; Mwadham M. Kabanda; Sasikumar Yesudass; Indra Bahadur; Abolanle S. Adekunle; I.B. Obot; Eno E. Ebenso

New chalcone derivatives namely (E)-(1-(5-(4-(3-(4-methylphenyl)-3-oxoprop-1-enyl)phenoxy)pentyl)-1H-1,2,3-triazol-4-yl)methyl acrylate (CH-5), (E)-(1-(5-(4-(3-(4-methylphenyl)-3-oxoprop-1-enyl)phenoxy)hexyl)-1H-1,2,3-triazol-4-yl)methyl acrylate (CH-6) and (E)-(1-(5-(4-(3-(4-methylphenyl)-3-oxoprop-1-enyl)phenoxy)decyl)-1H-1,2,3-triazol-4-yl) methyl acrylate (CH-10) were synthesized and characterized by Fourier transform infrared (FT-IR) and nuclear magnetic resonance (NMR) spectroscopic techniques. Ultraviolet-visible (UV-vis) spectra of the synthesized compounds confirmed that the chalcones undergo photo-cross-linking upon irradiation with UV-light. Potentiodynamic polarization measurements showed that both the intact and photo-cross-linked chalcones are mixed-type corrosion inhibitors for mild steel in aqueous hydrochloric acid. The EIS results showed an increase in charge transfer resistance with increasing concentration of the inhibitors. The chalcone derivatives adsorb spontaneously on the mild steel surface and their adsorption obeyed the Langmuir adsorption isotherm. The adsorption mode revealed the possibility of competitive physisorption and chemisorption mechanisms. Scanning electron microscopy coupled with energy dispersive X-ray spectroscopy (SEM-EDX) analyses confirmed that the chalcones formed a protective film on the mild steel surface. The overall results showed that the photo-cross-linked chalcones are better corrosion inhibitors than the intact chalcones. The results of quantum chemical calculations and Monte Carlo simulation studies are in good agreement with experimental results.


RSC Advances | 2016

Adsorption and corrosion inhibition properties of N-{n-[1-R-5-(quinoxalin-6-yl)-4,5-dihydropyrazol-3-yl]phenyl}methanesulfonamides on mild steel in 1 M HCl: experimental and theoretical studies

Lukman O. Olasunkanmi; I.B. Obot; Eno E. Ebenso

Six quinoxalinyl-dihydropyrazolyl-phenyl-methanesulfonamides were investigated for their adsorption characteristics and inhibition of mild steel corrosion in 1 M HCl medium. Tafel polarization measurements revealed that all the studied compounds are mixed-type inhibitors. Electrochemical impedance spectroscopy showed that the compounds form a pseudo-capacitive protective film on mild steel surface and protect the steel from direct acid attack. The inhibitors adsorb on mild steel in 1 M HCl via competitive physisorption and chemisorption mechanisms and their adsorption obeyed the Langmuir adsorption isotherm model. UV-vis spectra confirmed that the inhibitors interact with mild steel in solution to form Fe-inhibitor complexes. Scanning electron microscope (SEM) images also confirmed the protective efficacy of the studied compounds on mild steel in the acid. Quantum chemical calculations and quantitative structure activity relationship (QSAR) studies proposed good correlations between molecular quantum chemical descriptors and experimental inhibition efficiencies. Descriptors for protonated species correlate better than those of neutral species. Adsorption of the studied molecules was simulated on Fe(110) surface and the binding energies derived from molecular dynamics simulations corroborate experimental results. Compounds in which the sulfonamido group is attached to position 3 on the phenyl ring showed higher corrosion inhibition activities.


Molecules | 2015

Porphyrins as Corrosion Inhibitors for N80 Steel in 3.5% NaCl Solution: Electrochemical, Quantum Chemical, QSAR and Monte Carlo Simulations Studies

Ambrish Singh; Yuanhua Lin; M.A. Quraishi; Lukman O. Olasunkanmi; Omolola E. Fayemi; Yesudass Sasikumar; Baskar Ramaganthan; Indra Bahadur; I.B. Obot; Abolanle S. Adekunle; Mwadham M. Kabanda; Eno E. Ebenso

The inhibition of the corrosion of N80 steel in 3.5 wt. % NaCl solution saturated with CO2 by four porphyrins, namely 5,10,15,20-tetrakis(4-hydroxyphenyl)-21H,23H-porphyrin (HPTB), 5,10,15,20-tetra(4-pyridyl)-21H,23H-porphyrin (T4PP), 4,4′,4″,4‴-(porphyrin-5,10,15,20-tetrayl)tetrakis(benzoic acid) (THP) and 5,10,15,20-tetraphenyl-21H,23H-porphyrin (TPP) was studied using electrochemical impedance spectroscopy (EIS), potentiodynamic polarization, scanning electrochemical microscopy (SECM) and scanning electron microscopy (SEM) techniques. The results showed that the inhibition efficiency, η% increases with increasing concentration of the inhibitors. The EIS results revealed that the N80 steel surface with adsorbed porphyrins exhibited non-ideal capacitive behaviour with reduced charge transfer activity. Potentiodynamic polarization measurements indicated that the studied porphyrins acted as mixed type inhibitors. The SECM results confirmed the adsorption of the porphyrins on N80 steel thereby forming a relatively insulated surface. The SEM also confirmed the formation of protective films of the porphyrins on N80 steel surface thereby protecting the surface from direct acid attack. Quantum chemical calculations, quantitative structure activity relationship (QSAR) were also carried out on the studied porphyrins and the results showed that the corrosion inhibition performances of the porphyrins could be related to their EHOMO, ELUMO, ω, and μ values. Monte Carlo simulation studies showed that THP has the highest adsorption energy, while T4PP has the least adsorption energy in agreement with the values of σ from quantum chemical calculations.


Molecules | 2015

Adsorption and Corrosion Inhibition Studies of Some Selected Dyes as Corrosion Inhibitors for Mild Steel in Acidic Medium: Gravimetric, Electrochemical, Quantum Chemical Studies and Synergistic Effect with Iodide Ions

Thabo Peme; Lukman O. Olasunkanmi; Indra Bahadur; Abolanle S. Adekunle; Mwadham M. Kabanda; Eno E. Ebenso

The corrosion inhibition properties of some organic dyes, namely Sunset Yellow (SS), Amaranth (AM), Allura Red (AR), Tartrazine (TZ) and Fast Green (FG), for mild steel corrosion in 0.5 M HCl solution, were investigated using gravimetric, potentiodynamic polarization techniques and quantum chemical calculations. The results showed that the studied dyes are good corrosion inhibitors with enhanced inhibition efficiencies. The inhibition efficiency of all the studied dyes increases with increase in concentration, and decreases with increase in temperature. The results showed that the inhibition efficiency of the dyes increases in the presence of KI due to synergistic interactions of the dye molecules with iodide (I−) ions. Potentiodynamic polarization results revealed that the studied dyes are mixed-type inhibitors both in the absence and presence of KI. The adsorption of the studied dyes on mild steel surface, with and without KI, obeys the Langmuir adsorption isotherm and involves physical adsorption mechanism. Quantum chemical calculations revealed that the most likely sites in the dye molecules for interactions with mild steel are the S, O, and N heteroatoms.


RSC Advances | 2015

Electrochemical response of nitrite and nitric oxide on graphene oxide nanoparticles doped with Prussian blue (PB) and Fe2O3 nanoparticles

Abolanle S. Adekunle; Seonyane Lebogang; Portia L. Gwala; Tebogo P. Tsele; Lukman O. Olasunkanmi; Fayemi O. Esther; Diseko Boikanyo; Ntsoaki Mphuthi; John Adekunle Oyedele Oyekunle; A. O. Ogunfowokan; Eno E. Ebenso

Electrocatalytic behaviour of graphene oxide (GO), iron(III) oxide (Fe2O3) and Prussian blue (PB) nanoparticles and their nanocomposite towards nitrite (NO2−) and nitric oxide (NO) oxidation in neutral and acidic media respectively was investigated on a platinum (Pt) modified electrode. Successful synthesis of these nano materials was confirmed using microscopic and spectroscopic techniques. Successful modification of the electrode was confirmed using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The results showed that the Pt–GO–Fe2O3 and Pt–GO–PB nanocomposite modified electrodes gave a faster electron transfer process in both a 5 mM Ferri/Ferro ([Fe(CN)6]3−/4−) redox probe and 0.1 M phosphate buffer solution (PBS). The Pt–GO–Fe2O3 and Pt–GO–PB electrodes also gave an enhanced NO2− and NO oxidation current compared with bare Pt and the other electrodes studied. Electrocatalytic oxidation of the analyte occurred through a simple diffusion process but were characterized with some level of adsorption. Tafel slopes b of 468.4, 305.2 mV dec−1 (NO2−, NO); and 311.5, 277.2 mV dec−1 (NO2−, NO) were obtained for the analyte at the Pt–GO–Fe2O3 and Pt–GO–PB electrode respectively. The Pt–GO–Fe2O3 limit of detection and sensitivity in NO2− and NO are 6.60 μM (0.0084 μA μM−1) and 13.04 μM (0.0160 μA μM−1) respectively, while those of the Pt–GO–PB electrode are 16.58 μM (0.0093 μA μM−1) and 16.50 μM (0.0091 μA μM−1). The LoD compared favourably with literature reported values. Pt–GO–Fe2O3 gave a better performance to NO2− and NO electrooxidation, good resistance to electrode fouling, a higher catalytic rate constant and lower limit of detection. The adsorption equilibrium constant β and the standard free energy change ΔG0 due to adsorption are 10.29 × 103 M−1 (−22.89 kJ mol−1) and 3.26 × 103 M−1 (−20.04 kJ mol−1) for nitrite and nitric oxide respectively at the Pt–GO–Fe2O3 electrode. An interference study has also been reported. The fabricated sensors are easy to prepare, cost effective and can be applied for real sample analysis of nitrite and nitric oxide in food, water, biological and environmental samples.


Scientific Reports | 2017

Phthalocyanine Doped Metal Oxide Nanoparticles on Multiwalled Carbon Nanotubes Platform for the detection of Dopamine

Ntsoaki Mphuthi; Abolanle S. Adekunle; Omolola E. Fayemi; Lukman O. Olasunkanmi; Eno E. Ebenso

The electrocatalytic properties of metal oxides (MO = Fe3O4, ZnO) nanoparticles doped phthalocyanine (Pc) and functionalized MWCNTs, decorated on glassy carbon electrode (GCE) was investigated. Successful synthesis of the metal oxide nanoparticles and the MO/Pc/MWCNT composite were confirmed using UV-Vis, EDX, XRD and TEM techniques. Successful modification of GCE with the MO and their composite was also confirmed using cyclic voltammetry (CV) technique. GCE-MWCNT/ZnO/29H,31H-Pc was the best electrode towards DA detection with very low detection limit (0.75 μM) which compared favourably with literature, good sensitivity (1.45 μA/μM), resistance to electrode fouling, and excellent ability to detect DA without interference from AA signal. Electrocatalytic oxidation of DA on GCE-MWCNT/ZnO/29H,31H-Pc electrode was diffusion controlled but characterized with some adsorption of electro-oxidation reaction intermediates products. The fabricated sensors are easy to prepare, cost effective and can be applied for real sample analysis of dopamine in drug composition. The good electrocatalytic properties of 29H,31H-Pc and 2,3-Nc were related to their (quantum chemically derived) frontier molecular orbital energies and global electronegativities. The better performance of 29H,31H-Pc than 2,3-Nc in aiding electrochemical oxidation of DA might be due to its better electron accepting ability, which is inferred from its lower ELUMO and higher χ.

Collaboration


Dive into the Lukman O. Olasunkanmi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

I.B. Obot

King Fahd University of Petroleum and Minerals

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge