Lukmanee Tradtrantip
University of California, San Francisco
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Lukmanee Tradtrantip.
Annals of Neurology | 2012
Lukmanee Tradtrantip; Hua Zhang; Samira Saadoun; Puay-Wah Phuan; Chiwah Lam; Marios C. Papadopoulos; Jeffrey L. Bennett; A. S. Verkman
Neuromyelitis optica (NMO) is an inflammatory demyelinating disease of the central nervous system. Circulating autoantibodies (NMO‐immunoglobulin [Ig]G) against astrocyte water channel aquaporin‐4 (AQP4) cause complement‐ and cell‐mediated astrocyte damage with consequent neuroinflammation and demyelination. Current NMO therapies, which have limited efficacy, include immunosuppression and plasma exchange. The objective of this study was to develop a potential new NMO therapy based on blocking of pathogenic NMO‐IgG binding to its target, AQP4.
Molecular Pharmacology | 2010
Lukmanee Tradtrantip; Wan Namkung; A. S. Verkman
Crofelemer, a purified proanthocyanidin oligomer extracted from the bark latex of Croton lechleri, is in clinical trials for secretory diarrheas of various etiologies. We investigated the antisecretory mechanism of crofelemer by determining its effect on the major apical membrane transport and signaling processes involved in intestinal fluid transport. Using cell lines and measurement procedures to isolate the effects on individual membrane transport proteins, crofelemer at 50 μM had little or no effect on the activity of epithelial Na+ or K+ channels or on cAMP or calcium signaling. Crofelemer inhibited the cystic fibrosis transmembrane regulator (CFTR) Cl− channel with maximum inhibition of ∼60% and an IC50 ∼7 μM. Crofelemer action at an extracellular site on CFTR produced voltage-independent block with stabilization of the channel closed state. Crofelemer did not affect the potency of glycine hydrazide or thiazolidinone CFTR inhibitors. Crofelemer action resisted washout, with <50% reversal of CFTR inhibition after 4 h. Crofelemer was also found to strongly inhibit the intestinal calcium-activated Cl− channel TMEM16A by a voltage-independent inhibition mechanism with maximum inhibition >90% and IC50 ∼6.5 μM. The dual inhibitory action of crofelemer on two structurally unrelated prosecretory intestinal Cl− channels may account for its intestinal antisecretory activity.
Journal of Biological Chemistry | 2012
Puay-Wah Phuan; Julien Ratelade; Andrea Rossi; Lukmanee Tradtrantip; A. S. Verkman
Background: Complement-dependent cytotoxicity (CDC) plays a central role in neuromyelitis optica (NMO), in which NMO autoantibodies (NMO-IgG) bind to AQP4 on astrocytes. Results: NMO-IgG produced CDC only when AQP4 was assembled in orthogonal arrays of particles (OAPs). Conclusion: AQP4 assembly in OAPs is required for CDC by a mechanism involving multivalent C1q binding. Significance: Our results establish a new mechanism of OAP-dependent pathogenesis in NMO and suggest a novel therapeutic strategy. Neuromyelitis optica (NMO) is an inflammatory demyelinating disease of the central nervous system in which binding of pathogenic autoantibodies (NMO-IgG) to astrocyte aquaporin-4 (AQP4) causes complement-dependent cytotoxicity (CDC) and inflammation. We previously reported a wide range of binding affinities of NMO-IgGs to AQP4 in separate tetramers versus intramembrane aggregates (orthogonal arrays of particles, OAPs). We report here a second, independent mechanism by which CDC is affected by AQP4 assembly. Utilizing lactate dehydrogenase release and live/dead cell cytotoxicity assays, we found in different cell lines, and with different monoclonal and patient-derived NMO-IgGs, that CDC was greatly (>100-fold) reduced in cells expressing M1- versus M23-AQP4. Studies using a M23-AQP4 mutant containing an OAP-disrupting mutation, and in cells expressing AQP4 in different M1/M23 ratios, indicated that NMO-IgG-dependent CDC requires AQP4 OAP assembly. In contrast, antibody-dependent cell-mediated cytotoxicity produced by natural killer cells did not depend on AQP4 OAP assembly. Measurements of C1q binding and complement attack complex (C9neo) supported the conclusion that the greatly enhanced CDC by OAPs is due to efficient, multivalent binding of C1q to clustered NMO-IgG on OAPs. We conclude that AQP4 assembly in OAPs is required for CDC in NMO, establishing a new mechanism of OAP-dependent NMO pathogenesis. Disruption of AQP4 OAPs may greatly reduce NMO-IgG dependent CDC and NMO pathology.
Journal of Medicinal Chemistry | 2009
Lukmanee Tradtrantip; Nitin D. Sonawane; Wan Namkung; A. S. Verkman
Inhibitors of the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel are predicted to slow cyst enlargement in polycystic kidney disease and reduce intestinal fluid loss in secretory diarrheas. Screening of approximately 110000 small synthetic and natural compounds for inhibition of halide influx in CFTR-expressing epithelial cells yielded a new class of pyrimido-pyrrolo-quinoxalinedione (PPQ) CFTR inhibitors. Testing of 347 analogues established structure-activity relationships. The most potent compound, 7,9-dimethyl-11-phenyl-6-(5-methylfuran-2-yl)-5,6-dihydro-pyrimido[4,5-3,4]pyrrolo[1,2-a]quinoxaline-8,10-(7H,9H)-dione, PPQ-102, completely inhibited CFTR chloride current with IC(50) approximately 90 nM. The PPQs, unlike prior CFTR inhibitors, are uncharged at physiological pH, and therefore not subject to membrane potential-dependent cellular partitioning or block efficiency. Patch-clamp analysis confirmed voltage-independent CFTR inhibition by PPQ-102 and showed stabilization of the channel closed state. PPQ-102 prevented cyst expansion and reduced the size of preformed cysts in a neonatal kidney organ culture model of polycystic kidney disease. PPQ-102 is the most potent CFTR inhibitor identified to date.
Annals of Neurology | 2013
Lukmanee Tradtrantip; Julien Ratelade; Hua Zhang; A. S. Verkman
Neuromyelitis optica (NMO) is caused by binding of pathogenic autoantibodies (NMO‐immunoglobulin G [IgG]) to aquaporin‐4 (AQP4) on astrocytes, which initiates complement‐dependent cytotoxicity (CDC) and inflammation. We recently introduced mutated antibody (aquaporumab) and small‐molecule blocker strategies for therapy of NMO, based on prevention of NMO‐IgG binding to AQP4. Here, we investigated an alternative strategy involving neutralization of NMO‐IgG effector function by selective IgG heavy‐chain deglycosylation with bacteria‐derived endoglycosidase S (EndoS).
The FASEB Journal | 2012
Lukmanee Tradtrantip; Hua Zhang; Marc O. Anderson; Samira Saadoun; Puay-Wah Phuan; Marios C. Papadopoulos; Jeffrey L. Bennett; A. S. Verkman
Neuromyelitis optica (NMO) is an inflammatory demyelinating disease of spinal cord and optic nerve caused by pathogenic autoantibodies (NMO‐IgG) against astrocyte aquaporin‐4 (AQP4). We developed a high‐throughput screen to identify blockers of NMO‐IgG binding to human AQP4 using a human recombinant monoclonal NMO‐IgG and transfected Fisher rat thyroid cells stably expressing human M23‐AQP4. Screening of ~60,000 compounds yielded the antiviral arbidol, the flavonoid tamarixetin, and several plant‐derived berbamine alkaloids, each of which blocked NMO‐IgG binding to AQP4 without affecting AQP4 expression, array assembly, or water permeability. The compounds inhibited NMO‐IgG binding to AQP4 in NMO patient sera and blocked NMO‐IgG‐dependent complement‐ and cell‐mediated cytotoxicity with IC50 down to ~5 μM. Docking computations identified putative sites of blocker binding at the extracellular surface of AQP4. The blockers did not affect complement‐dependent cytotoxicity caused by anti‐GD3 antibody binding to ganglioside GD3. The blockers reduced by >80% the severity of NMO lesions in an ex vivo spinal cord slice culture model of NMO and in mice in vivo. Our results provide proof of concept for a small‐molecule blocker strategy to reduce NMO pathology. Small‐molecule blockers may also be useful for other autoimmune diseases caused by binding of pathogenic autoantibodies to defined targets.—Tradtrantip, L., Zhang, H., Anderson, M. O., Saadoun, S., Phuan, P.‐W., Papadopoulos, M. C., Bennett, J. L., Verkman, A. S. Small‐molecule inhibitors of NMO‐IgG binding to aquaporin‐4 reduce astrocyte cytotoxicity in neuromyelitis optica. FASEB J. 26, 2197‐2208 (2012). www.fasebj.org
Journal of Medicinal Chemistry | 2011
David S. Snyder; Lukmanee Tradtrantip; Chenjuan Yao; Mark J. Kurth; A. S. Verkman
We previously reported the discovery of pyrimido-pyrrolo-quinoxalinedione (PPQ) inhibitors of the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel and showed their efficacy in an organ culture model of polycystic kidney disease (PKD) (J. Med. Chem. 2009, 52, 6447-6455). Here, we report related benzopyrimido-pyrrolo-oxazinedione (BPO) CFTR inhibitors. To establish structure-activity relationships and select lead compound(s) with improved potency, metabolic stability, and aqueous solubility compared to the most potent prior compound 8 (PPQ-102, IC(50) ∼ 90 nM), we synthesized 16 PPQ analogues and 11 BPO analogues. The analogues were efficiently synthesized in 5-6 steps and 11-61% overall yield. Modification of 8 by bromine substitution at the 5-position of the furan ring, replacement of the secondary amine with an ether bridge, and carboxylation, gave 6-(5-bromofuran-2-yl)-7,9-dimethyl-8,10-dioxo-11-phenyl-7,8,9,10-tetrahydro-6H-benzo[b]pyrimido [4,5:3,4]pyrrolo [1,2-d][1,4]oxazine-2-carboxylic acid 42 (BPO-27), which fully inhibited CFTR with IC(50) ∼ 8 nM and, compared to 8, had >10-fold greater metabolic stability and much greater polarity/aqueous solubility. In an embryonic kidney culture model of PKD, 42 prevented cyst growth with IC(50) ∼ 100 nM. Benzopyrimido-pyrrolo-oxazinediones such as 42 are potential development candidates for antisecretory therapy of PKD.
Acta Neuropathologica | 2013
Puay-Wah Phuan; Hua Zhang; Nithi Asavapanumas; Michael Leviten; Arnon Rosenthal; Lukmanee Tradtrantip; A. S. Verkman
Neuromyelitis optica (NMO) is an autoimmune disorder with inflammatory demyelinating lesions in the central nervous system, particularly in the spinal cord and optic nerve. NMO pathogenesis is thought to involve binding of anti-aquaporin-4 (AQP4) autoantibodies to astrocytes, which causes complement-dependent cytotoxicity (CDC) and downstream inflammation leading to oligodendrocyte and neuronal injury. Vasculocentric deposition of activated complement is a prominent feature of NMO pathology. Here, we show that a neutralizing monoclonal antibody against the C1q protein in the classical complement pathway prevents AQP4 autoantibody-dependent CDC in cell cultures and NMO lesions in ex vivo spinal cord slice cultures and in mice. A monoclonal antibody against human C1q with 11xa0nM binding affinity prevented CDC caused by NMO patient serum in AQP4-transfected cells and primary astrocyte cultures, and prevented complement-dependent cell-mediated cytotoxicity (CDCC) produced by natural killer cells. The anti-C1q antibody prevented astrocyte damage and demyelination in mouse spinal cord slice cultures exposed to AQP4 autoantibody and human complement. In a mouse model of NMO produced by intracerebral injection of AQP4 autoantibody and human complement, the inflammatory demyelinating lesions were greatly reduced by intracerebral administration of the anti-C1q antibody. These results provide proof-of-concept for C1q-targeted monoclonal antibody therapy in NMO. Targeting of C1q inhibits the classical complement pathway directly and causes secondary inhibition of CDCC and the alternative complement pathway. As C1q-targeted therapy leaves the lectin complement activation pathway largely intact, its side-effect profile is predicted to differ from that of therapies targeting downstream complement proteins.
Acta Pharmacologica Sinica | 2011
A. S. Verkman; Julien Ratelade; Andrea Rossi; Hua Zhang; Lukmanee Tradtrantip
Aquaporin-4 (AQP4) is a water-selective transporter expressed in astrocytes throughout the central nervous system, as well as in kidney, lung, stomach and skeletal muscle. The two AQP4 isoforms produced by alternative spicing, M1 and M23 AQP4, form heterotetramers that assemble in cell plasma membranes in supramolecular structures called orthogonal arrays of particles (OAPs). Phenotype analysis of AQP4-null mice indicates the involvement of AQP4 in brain and spinal cord water balance, astrocyte migration, neural signal transduction and neuroinflammation. AQP4-null mice manifest reduced brain swelling in cytotoxic cerebral edema, but increased brain swelling in vasogenic edema and hydrocephalus. AQP4 deficiency also increases seizure duration, impairs glial scarring, and reduces the severity of autoimmune neuroinflammation. Each of these phenotypes is likely explicable on the basis of reduced astrocyte water permeability in AQP4 deficiency. AQP4 is also involved in the neuroinflammatory demyelinating disease neuromyelitis optica (NMO), where autoantibodies (NMO-IgG) targeting AQP4 produce astrocyte damage and inflammation. Mice administered NMO-IgG and human complement by intracerebral injection develop characteristic NMO lesions with neuroinflammation, demyelination, perivascular complement deposition and loss of glial fibrillary acidic protein and AQP4 immunoreactivity. Our findings suggest the potential utility of AQP4-based therapeutics, including small-molecule modulators of AQP4 water transport function for therapy of brain swelling, injury and epilepsy, as well as small-molecule or monoclonal antibody blockers of NMO-IgG binding to AQP4 for therapy of NMO.
Molecular Pharmacology | 2013
Lukmanee Tradtrantip; Nithi Asavapanumas; A. S. Verkman
Neuromyelitis optica (NMO) is an inflammatory demyelinating disease of the central nervous system caused by binding of pathogenic IgG autoantibodies (NMO-IgG) to astrocyte water channel aquaporin-4 (AQP4). Astrocyte damage and downstream inflammation require NMO-IgG effector function to initiate complement-dependent cytotoxicity (CDC) and antibody-dependent cell-mediated cytotoxicity (ADCC). Here, we evaluated the potential therapeutic utility of the bacterial enzyme IdeS (IgG-degrading enzyme of Streptococcus pyogenes), which selectively cleaves IgG antibodies to yield Fc and F(ab′)2 fragments. In AQP4-expressing cell cultures, IdeS treatment of monoclonal NMO-IgGs and NMO patient sera abolished CDC and ADCC, even when IdeS was added after NMO-IgG was bound to AQP4. Binding of NMO-IgG to AQP4 was similar to that of the NMO-F(ab′)2 generated by IdeS cleavage. NMO-F(ab′)2 competitively displaced pathogenic NMO-IgG, preventing cytotoxicity, and the Fc fragments generated by IdeS cleavage reduced CDC and ADCC. IdeS efficiently cleaved NMO-IgG in mice in vivo, and greatly reduced NMO lesions in mice administered NMO-IgG and human complement. IgG-selective cleavage by IdeS thus neutralizes NMO-IgG pathogenicity, and yields therapeutic F(ab′)2 and Fc fragments. IdeS treatment, by therapeutic apheresis or direct administration, may be beneficial in NMO.