Xiaoming Yao
University of California, San Francisco
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Xiaoming Yao.
Glia | 2006
Devin K. Binder; Xiaoming Yao; Zsolt Zador; Thomas J. Sick; A. S. Verkman; Geoffrey T. Manley
The glial water channel aquaporin‐4 (AQP4) has been hypothesized to modulate water and potassium fluxes associated with neuronal activity. In this study, we examined the seizure phenotype of AQP4 −/− mice using in vivo electrical stimulation and electroencephalographic (EEG) recording. AQP4 −/− mice were found to have dramatically prolonged stimulation‐evoked seizures after hippocampal stimulation compared to wild‐type controls (33 ± 2 s vs. 13 ± 2 s). In addition, AQP4 −/− mice were found to have a higher seizure threshold (167 ± 17 μA vs. 114 ± 10 μA). To assess a potential effect of AQP4 on potassium kinetics, we used in vivo recording with potassium‐sensitive microelectrodes after direct cortical stimulation. Although there was no significant difference in baseline or peak [K+]o, the rise time to peak [K+]o (t1/2, 2.3 ± 0.5 s) as well as the recovery to baseline [K+]o (t1/2, 15.6 ± 1.5 s) were slowed in AQP4 −/− mice compared to WT mice (t1/2, 0.5 ± 0.1 and 6.6 ± 0.7 s, respectively). These results implicate AQP4 in the expression and termination of seizure activity and support the hypothesis that AQP4 is coupled to potassium homeostasis in vivo.
Nature Methods | 2005
Prashant A. Padmawar; Xiaoming Yao; Orin Bloch; Geoffrey T. Manley; A. S. Verkman
We synthesized a water-soluble, long-wavelength K+ sensor, TAC-Red, consisting of triazacryptand coupled to 3,6-bis(dimethylamino)xanthylium, whose fluorescence increased 14-fold at 0–50 mM K+ with K+-to-Na+ selectivity >30. We visualized K+ waves in TAC-Red–stained brain cortex in mice during spreading depression, with velocity 4.4 ± 0.5 mm/min, and K+ release and reuptake half-times (t1/2) of 12 ± 2 and 32 ± 4 s, respectively. Aquaporin-4 (AQP4) deletion slowed K+ reuptake about twofold, suggesting AQP4-dependent K+ uptake by astroglia.
Progress in Brain Research | 2007
Zsolt Zador; Orin Bloch; Xiaoming Yao; Geoffrey T. Manley
The regulation of water balance in the brain is crucial. A disruption in this equilibrium causes an increase in brain water content that significantly contributes to the pathophysiology of traumatic brain injury, hydrocephalus, and a variety of neurological disorders. The discovery of the aquaporin (AQP) family of membrane water channels has provided important new insights into the physiology and pathology of brain water homeostasis. A number of recent studies are described in the review that demonstrated the important role of AQP1 and AQP4 in brain water balance and cerebral edema. Phenotypic analyses of AQP deficient mice have allowed us to explore the role of these membrane water channels in the mechanisms of cytotoxic edema, vasogenic edema, and CSF production. These studies indicate that AQP4 plays significant role in the development of cytotoxic edema and the absorption of excess brain water resulting from vasogenic edema. They also have demonstrated the role of AQP1 in CSF production and maintenance of steady-state ICP. The ability to modulate water flux through AQP deletion has provided new insights into brain water homeostasis and suggested a number of new research directions. However, these efforts have not yet translated to the treatment human clinical diseases. These advances will require the development of AQP inhibitors and activators to establish the benefit modulating the function of these water channels.
The Journal of Neuroscience | 2008
Xiaoming Yao; Sabina Hrabetova; Charles Nicholson; Geoffrey T. Manley
Aquaporin-4 (AQP4) is the major water channel expressed at fluid–tissue barriers throughout the brain and plays a crucial role in cerebral water balance. To assess whether these channels influence brain extracellular space (ECS) under resting physiological conditions, we used the established real-time iontophoresis method with tetramethylammonium (TMA+) to measure three diffusion parameters: ECS volume fraction (α), tortuosity (λ), and TMA+ loss (k′). In vivo measurements were performed in the somatosensory cortex of AQP4-deficient (AQP4−/−) mice and wild-type controls with matched age. Mice lacking AQP4 showed a 28% increase in α (0.23 ± 0.007 vs 0.18 ± 0.003) with no differences in λ (1.62 ± 0.04 vs 1.61 ± 0.02) and k′ (0.0045 ± 0.0001 vs 0.0031 ± 0.0009 s−1). Additional recordings in brain slices showed similarly elevated α in AQP4−/− mice, and no differences in λ and k′ between the two genotypes. This is the first direct comparison of ECS properties in adult mice lacking AQP4 water channels with wild-type animals and demonstrates a significant enlargement of the volume fraction but no difference in hindrance to TMA+ diffusion, expressed as tortuosity. These findings provide direct evidence for involvement of AQP4 in modulation of the ECS volume fraction and provide a basis for future modeling of water and ion transport in the CNS.
Neuroscience Letters | 2015
Xiaoming Yao; Nikita Derugin; Geoffrey T. Manley; A. S. Verkman
Aquaporin-4 (AQP4) is a water channel expressed in astrocyte end-feet lining the blood-brain barrier. AQP4 deletion in mice is associated with improved outcomes in global cerebral ischemia produced by transient carotid artery occlusion, and focal cerebral ischemia produced by permanent middle cerebral artery occlusion (MCAO). Here, we investigated the consequences of 1-h transient MCAO produced by intraluminal suture blockade followed by 23 h of reperfusion. In nine AQP4(+/+) and nine AQP4(-/-) mice, infarct volume was significantly reduced by an average of 39 ± 4% at 24h in AQP4(-/-) mice, cerebral hemispheric edema was reduced by 23 ± 3%, and Evans Blue extravasation was reduced by 31 ± 2% (mean ± SEM). Diffusion-weighted magnetic resonance imaging showed greatest reduction in apparent diffusion coefficient around the occlusion site after reperfusion, with remarkably lesser reduction in AQP4(-/-) mice. The reduced infarct volume in AQP4(-/-) mice following transient MCAO supports the potential utility of therapeutic AQP4 inhibition in stroke.
eLife | 2017
Alex J. Smith; Xiaoming Yao; James A. Dix; Byung-Ju Jin; A. S. Verkman
Transport of solutes through brain involves diffusion and convection. The importance of convective flow in the subarachnoid and paravascular spaces has long been recognized; a recently proposed ‘glymphatic’ clearance mechanism additionally suggests that aquaporin-4 (AQP4) water channels facilitate convective transport through brain parenchyma. Here, the major experimental underpinnings of the glymphatic mechanism were re-examined by measurements of solute movement in mouse brain following intracisternal or intraparenchymal solute injection. We found that: (i) transport of fluorescent dextrans in brain parenchyma depended on dextran size in a manner consistent with diffusive rather than convective transport; (ii) transport of dextrans in the parenchymal extracellular space, measured by 2-photon fluorescence recovery after photobleaching, was not affected just after cardiorespiratory arrest; and (iii) Aqp4 gene deletion did not impair transport of fluorescent solutes from sub-arachnoid space to brain in mice or rats. Our results do not support the proposed glymphatic mechanism of convective solute transport in brain parenchyma.
Acta neurochirurgica | 2006
Devin K. Binder; Xiaoming Yao; A. S. Verkman; Geoffrey T. Manley
Aquaporins are intrinsic membrane proteins involved in water transport in fluid-transporting tissues. In the brain, aquaporin-4 (AQP4) is expressed widely by glial cells, but its function is unclear. Extensive basic and clinical studies indicate that osmolarity affects seizure susceptibility, and in our previous studies we found that AQP4 -/- mice have an elevated seizure threshold in response to the chemoconvulsant pentylenetetrazol. In this study, we examined the seizure phenotype of AQP4 -/- mice in greater detail using in vivo electroencephalographic recording. AQP4 -/- mice were found to have dramatically longer stimulation-evoked seizures following hippocampal stimulation as well as a higher seizure threshold. These results implicate AQP4 in water and potassium regulation associated with neuronal activity and seizures.
Journal of Neurotrauma | 2015
Xiaoming Yao; Kazuyoshi Uchida; Marios C. Papadopoulos; Zsolt Zador; Geoffrey T. Manley; A. S. Verkman
Brain edema following traumatic brain injury (TBI) is associated with considerable morbidity and mortality. Prior indirect evidence has suggested the involvement of astrocyte water channel aquaporin-4 (AQP4) in the pathogenesis of TBI. Here, focal TBI was produced in wild type (AQP4(+/+)) and knockout (AQP4(-/-)) mice by controlled cortical impact injury (CCI) following craniotomy with dura intact (parameters: velocity 4.5 m/sec, depth 1.7 mm, dwell time 150 msec). AQP4-deficient mice showed a small but significant reduction in injury volume in the first week after CCI, with a small improvement in neurological outcome. Mechanistic studies showed reduced intracranial pressure at 6 h after CCI in AQP4(-/-) mice, compared with AQP4(+/+) control mice (11 vs. 19 mm Hg), with reduced local brain water accumulation as assessed gravimetrically. Transmission electron microscopy showed reduced astrocyte foot-process area in AQP4(-/-) mice at 24 h after CCI, with greater capillary lumen area. Blood-brain barrier disruption assessed by Evans blue dye extravasation was similar in AQP4(+/+) and AQP4(-/-) mice. We conclude that the mildly improved outcome in AQP4(-/-) mice following CCI results from reduced cytotoxic brain water accumulation, though concurrent cytotoxic and vasogenic mechanisms in TBI make the differences small compared to those seen in disorders where cytotoxic edema predominates.
Glia | 2015
Xiaoming Yao; Alex J. Smith; Byung-Ju Jin; Zsolt Zador; Geoffrey T. Manley; A. S. Verkman
The astrocyte water channel aquaporin‐4 (AQP4) regulates extracellular space (ECS) K+ concentration ([K+]e) and volume dynamics following neuronal activation. Here, we investigated how AQP4‐mediated changes in [K+]e and ECS volume affect the velocity, frequency, and amplitude of cortical spreading depression (CSD) depolarizations produced by surface KCl application in wild‐type (AQP4+/+) and AQP4‐deficient (AQP4−/−) mice. In contrast to initial expectations, both the velocity and the frequency of CSD were significantly reduced in AQP4−/− mice when compared with AQP4+/+ mice, by 22% and 32%, respectively. Measurement of [K+]e with K+‐selective microelectrodes demonstrated an increase to ∼35 mM during spreading depolarizations in both AQP4+/+ and AQP4−/− mice, but the rates of [K+]e increase (3.5 vs. 1.5 mM/s) and reuptake (t1/2 33 vs. 61 s) were significantly reduced in AQP4−/− mice. ECS volume fraction measured by tetramethylammonium iontophoresis was greatly reduced during depolarizations from 0.18 to 0.053 in AQP4+/+ mice, and 0.23 to 0.063 in AQP4−/− mice. Analysis of the experimental data using a mathematical model of CSD propagation suggested that the reduced velocity of CSD depolarizations in AQP4−/− mice was primarily a consequence of the slowed increase in [K+]e during neuronal depolarization. These results demonstrate that AQP4 effects on [K+]e and ECS volume dynamics accelerate CSD propagation. GLIA 2015;63:1860–1869
Pediatric Neurosurgery | 2017
A. S. Verkman; Lukmanee Tradtrantip; Alex J. Smith; Xiaoming Yao
The aquaporins (AQPs) are a family of water-transporting proteins that are broadly expressed in mammalian cells. Two AQPs in the central nervous system, AQP1 and AQP4, might play a role in hydrocephalus and are thus potential drug targets. AQP1 is expressed in the ventricular-facing membrane of choroid plexus epithelial cells, where it facilitates the secretion of cerebrospinal fluid (CSF). AQP4 is expressed in astrocyte foot processes and ependymal cells lining ventricles, where it appears to facilitate the transport of excess water out of the brain. Altered expression of these AQPs in experimental animal models of hydrocephalus and limited human specimens suggests their involvement in the pathophysiology of hydrocephalus, as do data in knockout mice demonstrating a protective effect of AQP1 deletion and a deleterious effect of AQP4 deletion in hydrocephalus. Though significant questions remain, including the precise contribution of AQP1 to CSF secretion in humans and the mechanisms by which AQP4 facilitates clearance of excess brain water, AQP1 and AQP4 have been proposed as potential drug targets to reduce ventricular enlargement in hydrocephalus.