Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lurong Zhang is active.

Publication


Featured researches published by Lurong Zhang.


Advances in Experimental Medicine and Biology | 2011

Antioxidant Properties of Quercetin

Mei Zhang; Steven G. Swarts; Liangjie Yin; Chaomei Liu; Yeping Tian; Yongbing Cao; Michael Swarts; Shanmin Yang; Steven B. Zhang; Kunzhong Zhang; Shaoqing Ju; David J. Olek; Lisa Schwartz; Peter C. Keng; Robert L. Howell; Lurong Zhang; Paul Okunieff

UNLABELLED Quercetin, a plant-derived aglycone form of flavonoid glycosides, has been used as a nutritional supplement and may be beneficial against a variety of diseases, including cancer. We examined the antioxidant properties of quercetin. The reduction potential of quercetin was measured at various pH values using voltammetric methods, and its total antioxidant capacity (TAC) was measured using the phosphomolybdenum method. The effect of quercetin on production of reactive oxygen species (ROS) and nitric oxide (NO) in LPS-stimulated human THP-1 acute monocytic leukemia cells was determined by flow cytometry using CM-H2DCFDA dye. The results were compared with curcumin, a natural product exhibiting a similar range of reported health benefits. RESULTS 1) Quercetin has a higher reduction potential compared with curcumin at three different pH settings and is comparable to Trolox at pH 7-9.5; 2) its TAC is 3.5 fold higher than curcumin; 3) it reduced LPS-induced ROS to near normal levels; 4) it reduced LPS-induced NO production. These data provide a physico-chemical basis for comparing antioxidants, with potential benefits individually or in combination.


Cancer Research | 2005

Tachyplesin Activates the Classic Complement Pathway to Kill Tumor Cells

Jinguo Chen; Xue-Ming Xu; Charles B. Underhill; Shanmin Yang; Luping Wang; Yixin Chen; Shuigen Hong; Karen Creswell; Lurong Zhang

Tachyplesin is a small, cationic peptide that possesses antitumor properties. However, little is known about its action mechanism. We used phage display to identify a protein that interacted with tachyplesin and isolated a sequence corresponding to the collagen-like domain of C1q, a key component in the complement pathway. Their interaction was subsequently confirmed by both ELISA and affinity precipitation. Tachyplesin seemed to activate the classic complement cascade because it triggered several downstream events, including the cleavage and deposition of C4 and C3 and the formation of C5b-9. When TSU tumor cells were treated with tachyplesin in the presence of serum, activated C4b and C3b could be detected on tumor cells by flow cytometry, Western blotting, and confocal microscopy. However, this effect was blocked when the tumor cells were treated with hyaluronidase or a large excess of hyaluronan, indicating that hyaluronan or related glycosaminoglycans were involved in this process. Treatment of cells with tachyplesin and serum increased in membrane permeability as indicated by the ability of FITC-dextran to enter the cytoplasm. Finally, the combination of tachyplesin and human serum markedly inhibited the proliferation and caused death of TSU cells, and these effects were attenuated if the serum was heat-inactivated or if hyaluronidase was added. Taken together, these observations suggest that tachyplesin binds to both hyaluronan on the cell surface and C1q in the serum and activates the classic complement cascade, which damages the integrity of the membranes of the tumor cells resulting in their death.


Oncogene | 1997

MCF-7 breast carcinoma cells overexpressing FGF-1 form vascularized, metastatic tumors in ovariectomized or tamoxifen-treated nude mice

Lurong Zhang; Samir Kharbanda; Denise Chen; Jamal Bullocks; David L. Miller; Ivan Ding; John Hanfelt; Sandra W. McLeskey; Francis G. Kern

FGF-1 is expressed in a high proportion of breast tumors. While overexpression of FGF-4 in the MCF-7 breast carcinoma cell line confers the ability to form spontaneously metastasizing tumors in ovariectomized nude mice without estrogen supplementation and in mice that receive tamoxifen pellets, the response of a cell to individual FGFs can be controlled at multiple levels, and the significance of FGF-1 expression in human breast tumors is uncertain. To study the role of FGF-1, MCF-7 human breast cancer carcinoma cells, previously transfected with bacterial β-galactosidase, were retransfected with FGF-1 expression vectors. FGF-1 transfectants formed large, vascularized tumors in ovariectomized nude mice without estrogen supplementation as well as in mice that received tamoxifen pellets. Lymphatic and pulmonary micrometastases were detected as deposits of X-gal-stained cells as early as 17 days after cell inoculation whereas no metastases were detected in estrogen-supplemented mice bearing similar-sized control tumors. When compared with controls, both clonal and polyclonal populations of FGF-1 overexpressing cells exhibited increased anchorage-independent growth and decreased population doubling times in estrogen-depleted or 4-hydroxytamoxifen containing medium. These results suggest that FGF signaling may be important in the transition of breast cancer cells from hormone-dependent to hormone-independent and from nonmetastatic to metastatic.


American Journal of Clinical Oncology | 2001

Keratinocyte growth factors radioprotect bowel and bone marrow but not KHT sarcoma

Paul Okunieff; Min Li; Weimin Liu; Jianzhong Sun; Bruce M. Fenton; Lurong Zhang; Ivan Ding

Various members of the fibroblast growth factor (FGF) family of proteins have been shown to protect against acute and late radiation damage of normal tissues. Protection of the small bowel, for example, occurs via both increased proliferation and reduced apoptosis. Other beneficial effects of FGFs include promotion of bone growth, pneumonitis prevention, and apoptosis suppression of endothelium in vivo and in vitro after irradiation. This protection against radiation requires only low and infrequent doses of FGFs. Two newly identified members of the FGF family, FGF7 and FGF10, have effects similar to many of the other FGF family proteins, but with more specificity for normal epithelial structures. For this reason, they have also been named keratinocyte growth factors one and two (KGF1 and KGF2, respectively). We therefore examined the potential utility of KGFs for radioprotection of the bone marrow and small bowel and examined safety issues concerning their adverse effects on KHT sarcoma. The results suggest that KGFs could be safely used to prevent radiation toxicity of the abdomen or pelvis and may in fact improve tumor response to radiation.


Clinical Cancer Research | 2007

Enhanced Antitumor Effect of Combined Triptolide and Ionizing Radiation

Wei Wang; Shanmin Yang; Ying Su; Zhenyu Xiao; Chunyou Wang; Xinfeng Li; Ling Lin; Bruce M. Fenton; Scott F. Paoni; Ivan Ding; Peter C. Keng; Paul Okunieff; Lurong Zhang

Purpose: The lack of effective treatment for pancreatic cancer results in a very low survival rate. This study explores the enhancement of the therapeutic effect on human pancreatic cancer via the combination of triptolide and ionizing radiation (IR). Experimental Design:In vitro AsPC-1 human pancreatic cancer cells were treated with triptolide alone, IR alone, or triptolide plus IR. Cell proliferation was analyzed with sulforhodamine B (SRB) method and clonogenic survival; comparison of apoptosis induced by the above treatment was analyzed by annexin V–propidium iodide (PI) staining. Furthermore, the expression of apoptotic pathway intermediates was measured by the assay of caspase activity and Western blot. Mitochondrial transmembrane potential was determined by JC-1 assay. In vivo, AsPC-1 xenografts were treated with 0.25 mg/kg triptolide, 10 Gy IR, or triptolide plus IR. The tumors were measured for volume and weight at the end of the experiment. Tumor tissues were tested for terminal nucleotidyl transferase–mediated nick end labeling (TUNEL) and immunohistochemistry. Results: The combination of triptolide plus IR reduced cell survival to 21% and enhanced apoptosis, compared with single treatment. In vivo, tumor growth of AsPC-1 xenografts was reduced further in the group treated with triptolide plus IR compared with single treatment. TUNEL and immunohistochemistry of caspase-3 cleavage in tumor tissues indicated that the combination of triptolide plus IR resulted in significantly enhanced apoptosis compared with single treatments. Conclusions: Triptolide in combination with ionizing radiation produced synergistic antitumor effects on pancreatic cancer both in vitro and in vivo and seems promising in the combined modality therapy of pancreatic cancer.


Advances in Experimental Medicine and Biology | 2005

Hypoxia-induced alterations in hyaluronan and hyaluronidase.

Feng Gao; Paul Okunieff; Zeqiu Han; Ivan Ding; Luping Wang; Weimin Liu; Jiaying Zhang; Shanmin Yang; Jinguo Chen; Charles B. Underhill; Sunghee Kim; Lurong Zhang

Hyaluronan (HA), a large negatively-charged polysaccharide, is a major component of vessel basal membrane. HA is expressed by a variety of cells, including tumor and endothelial cells. We hypothesized that HA could be up-regulated by hypoxia to enhance vessel formation. To determine the effect of hypoxia on the production of HA, tumor cells were treated with either media alone (control) or a hypoxia inducer (CoCl or NaN3) for 24 h. The level of HA in the media was then measured by ELISA. The results showed that both CoCl and NaN3 induced the production of HA. Since the low molecular weight form of HA (SMW) possesses pro-angiogenic properties, we investigated whether hypoxia-induced HA can be processed into SMW. Under hypoxic conditions, the activity of hyaluronidase, the enzyme responsible for degrading HA, was measured by an ELISA-like assay. The activity of hyaluronidase was shown to be up-regulated by hypoxia and, further, could carry out the function of processing HA into SMW. In addition, the hypoxic areas of tumor tissues were stained strongly with biotinylated HA-binding proteins, indicating that the level of HA was high compared to the oxic areas. This study demonstrates that hypoxia can stimulate the production of HA and the activity of hyaluronidase, which may promote angiogenesis as a compensation mechanism for hypoxia.


Advances in Experimental Medicine and Biology | 2009

Replication of Murine Mitochondrial DNA Following Irradiation

Hengshan Zhang; David James Maguire; Steven G. Swarts; Weimin Sun; Shanmin Yang; Wei Wang; Chaomei Liu; Mei Zhang; Di Zhang; L. Zhang; Kunzhong Zhang; Peter C. Keng; Lurong Zhang; Paul Okunieff

The effect of radiation on the mitochondrial genome in vivo is largely unknown. Though mitochondrial DNA (mtDNA) is vital for cellular survival and proliferation, it has little DNA repair machinery compared with nuclear DNA (nDNA). A better understanding of how radiation affects mtDNA should lead to new approaches for radiation protection. We have developed a new system using real-time PCR that sensitively detects the change in copy number of mtDNA compared with nDNA. In each sample, the DNA sequence coding 18S rRNA served as the nDNA reference in a run simultaneously with a mtDNA sequence. Small bowel collected 24 hours after 2 Gy or 4 Gy total body irradiation (TBI) exhibited increased levels of mtDNA compared with control mice. A 4 Gy dose produced a greater effect than 2 Gy. Similarly, in bone marrow collected 24 hours after 4 Gy or 7 Gy TBI, 7 Gy produced a greater response than 4 Gy. As a function of time, a greater effect was seen at 48 hours compared with 24 hours. In conclusion, we found that radiation increased the ratio of mtDNA:nDNA and that this effect seems to be tissue independent and seems to increase with radiation dose and duration following radiation exposure.


PLOS ONE | 2013

Icaritin Synergistically Enhances the Radiosensitivity of 4T1 Breast Cancer Cells

Jinsheng Hong; Zhenhuan Zhang; Wenlong Lv; Mei Zhang; Chun Chen; Shanmin Yang; Shan Li; Lurong Zhang; Deping Han; Weijian Zhang

Icaritin (ICT) is a hydrolytic form of icariin isolated from plants of the genus Epimedium. This study was to investigate the radiosensitization effect of icaritin and its possible underlying mechanism using murine 4T1 breast cancer cells. The combination of Icaritin at 3 µM or 6 µM with 6 or 8 Gy of ionizing radiation (IR) in the clonogenic assay yielded an ER (enhancement ratio) of 1.18 or 1.28, CI (combination index) of 0.38 or 0.19 and DRI (dose reducing index) of 2.51 or 5.07, respectively. These strongly suggest that Icaritin exerted a synergistic killing (?) effect with radiation on the tumor cells. This effect might relate with bioactivities of ICT: 1) exert an anti-proliferative effect in a dose- and time-dependent manner, which is different from IR killing effect but likely work together with the IR effect; 2) suppress the IR-induced activation of two survival paths, ERK1/2 and AKT; 3) induce the G2/M blockage, enhancing IR killing effect; and 4) synergize with IR to enhance cell apoptosis. In addition, ICT suppressed angiogenesis in chick embryo chorioallantoic membrane (CAM) assay. Taken together, ICT is a new radiosensitizer and can enhance anti-cancer effect of IR or other therapies.


Cytokine | 2012

Response patterns of cytokines/chemokines in two murine strains after irradiation

Mei Zhang; Liangjie Yin; Kunzhong Zhang; Weimin Sun; Shanmin Yang; Bingrong Zhang; Peter Salzman; Wei Wang; Chaomei Liu; Sadasivan Vidyasagar; Lei Zhang; Shaoqing Ju; Paul Okunieff; Lurong Zhang

PURPOSE To determine the plasma concentrations of acute responding cytokines/chemokines following 9-Gy ionizing radiation in C57BL/6 (radiation tolerant) and C3H/HeN (radiation sensitive) murine strains. METHODS AND MATERIALS Mice (5/group) received 9-Gy total body irradiation (TBI), and the plasma from each mouse was collected at 6h or 1, 2, 4, or 10 days after TBI. A multiplex bead array was used to assess the levels of 32 cytokines/chemokines in plasma to determine their common and strain-specific temporal responses. RESULTS The plasma levels of five cytokines/chemokines (Axl, FasL, ICAM-1, TARC, and TSLP) were beyond the detectable level. Five (VEGF, IL-2, IL-5, IL-17, and CD30) were unaffected by irradiation in either strain. Temporal patterns were similar in both murine strains for 10 of the cytokines tested, including G-CSF, IL-6, TCA-3, MCP-1, MIP-1γ, KC, CXCL 13, CXCL 16, MDC, and TIMP-1; the other 12 molecules (GM-CSF, IL-3, SCF, IL-1β, IL-4, IL-10, IL-12p70, MIP-1α, Eotaxin, TNF-α, sTNF-R1, and CD40) showed strain-specific response patterns. While a number of cytokines had temporal response patterns following TBI, the strains exhibited quantitatively different results. CONCLUSIONS The levels of 27 of the 32 plasma cytokines measured indicate the following: (1) different cytokine concentrations and temporal patterns in the two strains may partly explain different radiation sensitivities and sequelae following irradiation; (2) many of the cytokines/chemokines exhibit similar temporal responses in the two strains. These responses suggest the potential value of using a panel of cytokine/chemokine temporal patterns for radiation dosimetry. Although radiation doses will be difficult to quantitate due to the large variation in levels and temporal responses exhibited in the two murine strains, serial measurements of cytokines might help identify subjects exposed to radiation.


Clinica Chimica Acta | 2012

Serum decoy receptor 3, a potential new biomarker for sepsis

Yanqiang Hou; Ping Xu; Mei Zhang; Deping Han; Liang Peng; Dongyu Liang; Shanmin Yang; Zhenhuan Zhang; Jinsheng Hong; Xiaoli Lou; Lurong Zhang; Sunghee Kim

BACKGROUND Sepsis, a common deadly systemic infection caused by a variety of pathogens, has some clinical symptoms similar to the systemic inflammatory response syndrome (SIRS), a whole-body non-infectious inflammatory reaction to severe insults, such as burn, trauma, hypotensive shock and so on. Treatment of sepsis depends mainly on anti-microbial, while remedy for SIRS might require steroids that could possibly enhance the spread of microbes. Unfortunately, it is very difficult to distinguish these two completely different serious conditions without blood culture, which takes days to grow and identify causative pathogens. We examined a biomarker, serum decoy receptor 3 (DcR3), was evaluated for its utility in the differential diagnosis between sepsis and SIRS. METHODS Serum DcR3 level in 118 healthy controls, 24 sepsis patients and 43 SIRS patients, was quantitatively measured by enzyme-linked immunosorbent assay (ELISA). RESULTS The serum DcR3 was significantly increased in sepsis patients compared with SIRS patients and healthy controls (6.11±2.58 ng/ml vs 2.62±1.46 ng/ml, and 0.91±0.56 ng/ml, respectively, p<0.001). The areas under the receiver operating characteristic curve of DcR3 for the normal vs. SIRS, normal vs. sepsis and SIRS vs. sepsis were 0.910 (0.870-0.950), 0.992 (0.984-1.000) and 0.896 (0.820-0.973), respectively. In addition, the DcR3 exhibited a positive correlation coefficient with APACHE II score, a most commonly used index for the severity of sepsis (r=0.556, p=0.005). CONCLUSION The serum DcR3 has a potential to serve as a new biomarker for sepsis with its high specificity and sensitivity.

Collaboration


Dive into the Lurong Zhang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mei Zhang

University of Florida

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chun Chen

Fujian Medical University

View shared research outputs
Top Co-Authors

Avatar

Deping Han

Fujian Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Amy Zhang

University of Florida

View shared research outputs
Researchain Logo
Decentralizing Knowledge