Lusik Cherkezyan
Northwestern University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Lusik Cherkezyan.
Cancer Research | 2012
Dhwanil Damania; Hemant K. Roy; Hariharan Subramanian; David S. Weinberg; Douglas K. Rex; Michael J. Goldberg; Joseph P. Muldoon; Lusik Cherkezyan; Yuanjia Zhu; Laura K. Bianchi; Dhiren Shah; Prabhakar Pradhan; Monica S. Borkar; Henry T. Lynch; Vadim Backman
Developing a minimally invasive and cost-effective prescreening strategy for colon cancer is critical because of the impossibility of conducting colonoscopy on the entire at-risk population. The concept of field carcinogenesis, in which normal-appearing tissue away from a tumor has molecular and, consequently, nano-architectural abnormalities, offers one attractive approach to identify high-risk patients. In this study, we investigated whether the novel imaging technique partial wave spectroscopic (PWS) microscopy could risk-stratify patients harboring precancerous lesions of the colon, using an optically measured biomarker (L(d)) obtained from microscopically normal but nanoscopically altered cells. Rectal epithelial cells were examined from 146 patients, including 72 control patients, 14 patients with diminutive adenomas, 20 patients with nondiminutive/nonadvanced adenomas, 15 patients with advanced adenomas/high-grade dysplasia, 12 patients with genetic mutation leading to Lynch syndrome, and 13 patients with cancer. We found that the L(d) obtained from rectal colonocytes was well correlated with colon tumorigenicity in our patient cohort and in an independent validation set of 39 additional patients. Therefore, our findings suggest that PWS-measured L(d) is an accurate marker of field carcinogenesis. This approach provides a potential prescreening strategy for risk stratification before colonoscopy.
BMC Cancer | 2014
Lusik Cherkezyan; Yolanda Stypula-Cyrus; Hariharan Subramanian; Craig White; Mart Dela Cruz; Ramesh K. Wali; Michael J. Goldberg; Laura K. Bianchi; Hemant K. Roy; Vadim Backman
BackgroundNuclear alterations are a well-known manifestation of cancer. However, little is known about the early, microscopically-undetectable stages of malignant transformation. Based on the phenomenon of field cancerization, the tissue in the field of a tumor can be used to identify and study the initiating events of carcinogenesis. Morphological changes in nuclear organization have been implicated in the field of colorectal cancer (CRC), and we hypothesize that characterization of chromatin alterations in the early stages of CRC will provide insight into cancer progression, as well as serve as a biomarker for early detection, risk stratification and prevention.MethodsFor this study we used transmission electron microscopy (TEM) images of nuclei harboring pre-neoplastic CRC alterations in two models: a carcinogen-treated animal model of early CRC, and microscopically normal-appearing tissue in the field of human CRC. We quantify the chromatin arrangement using approaches with two levels of complexity: 1) binary, where chromatin is separated into areas of dense heterochromatin and loose euchromatin, and 2) grey-scale, where the statistics of continuous mass-density distribution within the nucleus is quantified by its spatial correlation function.ResultsWe established an increase in heterochromatin content and clump size, as well as a loss of its characteristic peripheral positioning in microscopically normal pre-neoplastic cell nuclei. Additionally, the analysis of chromatin density showed that its spatial distribution is altered from a fractal to a stretched exponential.ConclusionsWe characterize quantitatively and qualitatively the nanoscale structural alterations preceding cancer development, which may allow for the establishment of promising new biomarkers for cancer risk stratification and diagnosis. The findings of this study confirm that ultrastructural changes of chromatin in field carcinogenesis represent early neoplastic events leading to the development of well-documented, microscopically detectable hallmarks of cancer.
International Journal of Cancer | 2013
Dhwanil Damania; Hemant K. Roy; Dhananja Kunte; Jean A. Hurteau; Hariharan Subramanian; Lusik Cherkezyan; Nela Krosnjar; Maitri Shah; Vadim Backman
Ovarian cancer ranks fifth in cancer fatalities among American women. Although curable at early stages with surgery, most women are diagnosed with symptoms of late‐stage metastatic disease. Moreover, none of the current diagnostic techniques are clinically recommended for at‐risk women as they preferentially target low‐grade tumors (which do not affect longevity) and fail to capture early signatures of more lethal serous tumors which originate in the fimbrae region of the fallopian tubes. Hence, the early detection of ovarian cancer is challenging given the current strategy. Recently, our group has developed a novel optical imaging technique, partial wave spectroscopic (PWS) microscopy, that can quantify the nanoscale macromolecular density fluctuations within biological cells via a biomarker, disorder strength (Ld). Using the concept of field carcinogenesis, we propose a method of detecting ovarian cancer by PWS assessment of endometrial and endocervical columnar cells. The study includes 26 patients (controls = 15, cancer = 11) for endometrium and 23 (controls = 13, cancer = 10) for endocervix. Our results highlight a significant increase in Ld (% fold‐increase > 50%, p‐value < 0.05) for columnar epithelial cells obtained from cancer patients compared to controls for both endocervix and endometrium. Overall, the quantification of field carcinogenic events in the endometrium and the novel observation of its extension to the cervix are unique findings in the understanding of ovarian field carcinogenesis. We further show independent validation of the presence of cervical field carcinogenesis with micro‐RNA expression data.
Endoscopy | 2013
Vani J. Konda; Lusik Cherkezyan; Hariharan Subramanian; Kirsten Wroblewski; Dhwanil Damania; Valentin Becker; Mariano Haba Ruiz Gonzalez; Ann Koons; Michael J. Goldberg; Mark K. Ferguson; Irving Waxman; Hermant Roy; Vadim Backman
BACKGROUND AND STUDY AIMS Esophageal adenocarcinoma (EAC) has a dismal prognosis unless treated early or prevented at the precursor stage of Barretts esophagus-associated dysplasia. However, some patients with cancer or dysplastic Barretts esophagus (DBE) may not be captured by current screening and surveillance programs. Additional screening techniques are needed to determine who would benefit from endoscopic screening or surveillance. Partial wave spectroscopy (PWS) microscopy (also known as nanocytology) measures the disorder strength (Ld ), a statistic that characterizes the spatial distribution of the intracellular mass at the nanoscale level and thus provides insights into the cell nanoscale architecture beyond that which is revealed by conventional microscopy. The aim of the present study was to compare the disorder strength measured by PWS in normal squamous epithelium in the proximal esophagus to determine whether nanoscale architectural differences are detectable in the field area of EAC and Barretts esophagus. METHODS During endoscopy, proximal esophageal squamous cells were obtained by brushings and were fixed in alcohol and stained with standard hematoxylin and Cyto-Stain. The disorder strength of these sampled squamous cells was determined by PWS. RESULTS A total of 75 patient samples were analyzed, 15 of which were pathologically confirmed as EAC, 13 were DBE, and 15 were non-dysplastic Barretts esophagus; 32 of the patients, most of whom had reflux symptoms, acted as controls. The mean disorder strength per patient in cytologically normal squamous cells in the proximal esophagus of patients with EAC was 1.79-times higher than that of controls (P<0.01). Patients with DBE also had a disorder strength 1.63-times higher than controls (P<0.01). CONCLUSION Intracellular nanoarchitectural changes were found in the proximal squamous epithelium in patients harboring distal EAC and DBE using PWS. Advances in this technology and the biological phenomenon of the field effect of carcinogenesis revealed in this study may lead to a useful tool in non-invasive screening practices in DBE and EAC.
Scientific Reports | 2017
Luay M. Almassalha; Ashish K. Tiwari; Peder Thusgaard Ruhoff; Yolanda Stypula-Cyrus; Lusik Cherkezyan; Hiroaki Matsuda; M A Dela Cruz; John E. Chandler; Charles C White; Charles D. Maneval; Hariharan Subramanian; Igal Szleifer; Hemant K. Roy; Vadim Backman
Most of what we know about gene transcription comes from the view of cells as molecular machines: focusing on the role of molecular modifications to the proteins carrying out transcriptional reactions at a loci-by-loci basis. This view ignores a critical reality: biological reactions do not happen in an empty space, but in a highly complex, interrelated, and dense nanoenvironment that profoundly influences chemical interactions. We explored the relationship between the physical nanoenvironment of chromatin and gene transcription in vitro. We analytically show that changes in the fractal dimension, D, of chromatin correspond to simultaneous increases in chromatin accessibility and compaction heterogeneity. Using these predictions, we demonstrate experimentally that nanoscopic changes to chromatin D within thirty minutes correlate with concomitant enhancement and suppression of transcription. Further, we show that the increased heterogeneity of physical structure of chromatin due to increase in fractal dimension correlates with increased heterogeneity of gene networks. These findings indicate that the higher order folding of chromatin topology may act as a molecular-pathway independent code regulating global patterns of gene expression. Since physical organization of chromatin is frequently altered in oncogenesis, this work provides evidence pairing molecular function to physical structure for processes frequently altered during tumorigenesis.
Proceedings of the National Academy of Sciences of the United States of America | 2016
Luay M. Almassalha; Greta M. Bauer; John E. Chandler; Scott Gladstein; Lusik Cherkezyan; Yolanda Stypula-Cyrus; Samuel E. Weinberg; Di Zhang; Peder Thusgaard Ruhoff; Hemant K. Roy; Hariharan Subramanian; Navdeep S. Chandel; Igal Szleifer; Vadim Backman
Significance Chromatin is one of the most critical structures within the cell because it houses most genetic information. Its structure is well understood at the nucleosomal (<20-nm) and chromosomal (>200-nm) levels; however, due to the lack of quantitative imaging modalities to study this organization, little is known about the higher-order structure between these length scales in live cells. We present a label-free technique, live-cell partial-wave spectroscopic (PWS) microscopy, with sensitivity to structures between 20 and 200 nm that can quantify the nanoarchitecture in live cells. With this technique, we can detect DNA fragmentation and expand on the link between metabolic function and higher-order chromatin structure. Live-cell PWS allows high-throughput study of the relationship between nanoscale organization and molecular function. The organization of chromatin is a regulator of molecular processes including transcription, replication, and DNA repair. The structures within chromatin that regulate these processes span from the nucleosomal (10-nm) to the chromosomal (>200-nm) levels, with little known about the dynamics of chromatin structure between these scales due to a lack of quantitative imaging technique in live cells. Previous work using partial-wave spectroscopic (PWS) microscopy, a quantitative imaging technique with sensitivity to macromolecular organization between 20 and 200 nm, has shown that transformation of chromatin at these length scales is a fundamental event during carcinogenesis. As the dynamics of chromatin likely play a critical regulatory role in cellular function, it is critical to develop live-cell imaging techniques that can probe the real-time temporal behavior of the chromatin nanoarchitecture. Therefore, we developed a live-cell PWS technique that allows high-throughput, label-free study of the causal relationship between nanoscale organization and molecular function in real time. In this work, we use live-cell PWS to study the change in chromatin structure due to DNA damage and expand on the link between metabolic function and the structure of higher-order chromatin. In particular, we studied the temporal changes to chromatin during UV light exposure, show that live-cell DNA-binding dyes induce damage to chromatin within seconds, and demonstrate a direct link between higher-order chromatin structure and mitochondrial membrane potential. Because biological function is tightly paired with structure, live-cell PWS is a powerful tool to study the nanoscale structure–function relationship in live cells.
Nature Biomedical Engineering | 2017
Luay M. Almassalha; Greta M. Bauer; Wenli Wu; Lusik Cherkezyan; Di Zhang; Alexis M. Kendra; Scott Gladstein; John E. Chandler; David Vanderway; Brandon Luke L. Seagle; Andrey Ugolkov; Daniel D. Billadeau; Thomas V. O'Halloran; Andrew P. Mazar; Hemant K. Roy; Igal Szleifer; Shohreh Shahabi; Vadim Backman
Many human diseases result from the dysregulation of the complex interactions between tens to thousands of genes. However, approaches for the transcriptional modulation of many genes simultaneously in a predictive manner are lacking. Here, through the combination of simulations, systems modelling and in vitro experiments, we provide a physical regulatory framework based on chromatin packing-density heterogeneity for modulating the genomic information space. Because transcriptional interactions are essentially chemical reactions, they depend largely on the local physical nanoenvironment. We show that the regulation of the chromatin nanoenvironment allows for the predictable modulation of global patterns in gene expression. In particular, we show that the rational modulation of chromatin density fluctuations can lead to a decrease in global transcriptional activity and intercellular transcriptional heterogeneity in cancer cells during chemotherapeutic responses to achieve near-complete cancer cell killing in vitro. Our findings represent a ‘macrogenomic engineering’ approach to modulating the physical structure of chromatin for whole-scale transcriptional modulation.A model accounting for the properties of the local chromatin environment predicts the modulation of patterns in gene expression and helps screen for chemotherapeutic adjuvants that lead to an enhanced therapeutic response in cancer cells.
Biomedical Optics Express | 2016
John E. Chandler; Lusik Cherkezyan; Hariharan Subramanian; Vadim Backman
Partial Wave Spectroscopic (PWS) Microscopy has proven effective at detecting nanoscale hallmarks of carcinogenesis in histologically normal-appearing cells. The current method of data analysis requires acquisition of a three-dimensional data cube, consisting of multiple images taken at different illumination wavelengths, limiting the technique to data acquisition on ~30 individual cells per slide. To enable high throughput data acquisition and whole-slide imaging, new analysis procedures were developed that require fewer wavelengths in the same 500-700nm range for spectral analysis. The nanoscale sensitivity of the new analysis techniques was validated (i) theoretically, using finite-difference time-domain solutions of Maxwells equations, as well as (ii) experimentally, by measuring nanostructural alterations associated with carcinogenesis in biological cells.
Biomedical Optics Express | 2016
Wenli Wu; Andrew J. Radosevich; Adam Eshein; The-Quyen Nguyen; Ji Yi; Lusik Cherkezyan; Hemant K. Roy; Igal Szleifer; Vadim Backman
The microscopic structural origins of optical properties in biological media are still not fully understood. Better understanding these origins can serve to improve the utility of existing techniques and facilitate the discovery of other novel techniques. We propose a novel analysis technique using electron microscopy (EM) to calculate optical properties of specific biological structures. This method is demonstrated with images of human epithelial colon cell nuclei. The spectrum of anisotropy factor g, the phase function and the shape factor D of the nuclei are calculated. The results show strong agreement with an independent study. This method provides a new way to extract the true phase function of biological samples and provides an independent validation for optical property measurement techniques.
Optics Letters | 2015
Di Zhang; Lusik Cherkezyan; Ilker R. Capoglu; Hariharan Subramanian; John E. Chandler; Sebastian Thompson; Allen Taflove; Vadim Backman
We previously established that spectroscopic microscopy can quantify subdiffraction-scale refractive index (RI) fluctuations in a label-free dielectric medium with a smooth surface. However, to study more realistic samples, such as biological cells, the effect of rough surface should be considered. In this Letter, we first report an analytical theory to synthesize microscopic images of a rough surface, validate this theory by finite-difference time-domain (FDTD) solutions of Maxwells equations, and characterize the spectral properties of light reflected from a rough surface. Then, we report a technique to quantify the RI fluctuations beneath a rough surface and demonstrate its efficacy on FDTD-synthesized spectroscopic microscopy images, as well as experimental data obtained from biological cells.