Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lut Van Laer is active.

Publication


Featured researches published by Lut Van Laer.


Nature Genetics | 2012

Loss-of-function mutations in TGFB2 cause a syndromic presentation of thoracic aortic aneurysm

Mark E. Lindsay; Dorien Schepers; Nikhita Ajit Bolar; Jefferson J. Doyle; Elena M. Gallo; Justyna Fert-Bober; Marlies Kempers; Elliot K. Fishman; Yichun Chen; Loretha Myers; Djahita Bjeda; Gretchen Oswald; Abdallah F. Elias; Howard P. Levy; Britt Marie Anderlid; Margaret Yang; Ernie M.H.F. Bongers; Janneke Timmermans; Alan C. Braverman; Natalie Canham; Geert Mortier; Han G. Brunner; Peter H. Byers; Jennifer E. Van Eyk; Lut Van Laer; Harry C. Dietz; Bart Loeys

Loeys-Dietz syndrome (LDS) associates with a tissue signature for high transforming growth factor (TGF)-β signaling but is often caused by heterozygous mutations in genes encoding positive effectors of TGF-β signaling, including either subunit of the TGF-β receptor or SMAD3, thereby engendering controversy regarding the mechanism of disease. Here, we report heterozygous mutations or deletions in the gene encoding the TGF-β2 ligand for a phenotype within the LDS spectrum and show upregulation of TGF-β signaling in aortic tissue from affected individuals. Furthermore, haploinsufficient Tgfb2+/− mice have aortic root aneurysm and biochemical evidence of increased canonical and noncanonical TGF-β signaling. Mice that harbor both a mutant Marfan syndrome (MFS) allele (Fbn1C1039G/+) and Tgfb2 haploinsufficiency show increased TGF-β signaling and phenotypic worsening in association with normalization of TGF-β2 expression and high expression of TGF-β1. Taken together, these data support the hypothesis that compensatory autocrine and/or paracrine events contribute to the pathogenesis of TGF-β–mediated vasculopathies.


Nature Genetics | 2006

Mutations in the gene encoding pejvakin, a newly identified protein of the afferent auditory pathway, cause DFNB59 auditory neuropathy

Sedigheh Delmaghani; Francisco Castillo; Vincent Michel; Michel Leibovici; Asadollah Aghaie; Uri Ron; Lut Van Laer; Nir Ben-Tal; Guy Van Camp; Dominique Weil; Francina Langa; Mark Lathrop; Paul Avan; Christine Petit

Auditory neuropathy is a particular type of hearing impairment in which neural transmission of the auditory signal is impaired, while cochlear outer hair cells remain functional. Here we report on DFNB59, a newly identified gene on chromosome 2q31.1–q31.3 mutated in four families segregating autosomal recessive auditory neuropathy. DFNB59 encodes pejvakin, a 352-residue protein. Pejvakin is a paralog of DFNA5, a protein of unknown function also involved in deafness. By immunohistofluorescence, pejvakin is detected in the cell bodies of neurons of the afferent auditory pathway. Furthermore, Dfnb59 knock-in mice, homozygous for the R183W variant identified in one DFNB59 family, show abnormal auditory brainstem responses indicative of neuronal dysfunction along the auditory pathway. Unlike previously described sensorineural deafness genes, all of which underlie cochlear cell pathologies, DFNB59 is the first human gene implicated in nonsyndromic deafness due to a neuronal defect.


Jaro-journal of The Association for Research in Otolaryngology | 2008

Occupational Noise, Smoking, and a High Body Mass Index are Risk Factors for Age-related Hearing Impairment and Moderate Alcohol Consumption is Protective: A European Population-based Multicenter Study

Erik Fransen; Vedat Topsakal; Jan Hendrickx; Lut Van Laer; Jeroen R. Huyghe; Els Van Eyken; Nele Lemkens; Samuli Hannula; Elina Mäki-Torkko; M. Jensen; Kelly Demeester; Anke Tropitzsch; Amanda Bonaconsa; Manuela Mazzoli; Angeles Espeso; K. Verbruggen; J. Huyghe; P.L.M. Huygen; Sylvia J. W. Kunst; Minna Manninen; Amalia Diaz-Lacava; Michael Steffens; Thomas F. Wienker; Ilmari Pyykkö; C.W.R.J. Cremers; Hannie Kremer; Ingeborg Dhooge; Dafydd Stephens; Eva Orzan; Markus Pfister

A multicenter study was set up to elucidate the environmental and medical risk factors contributing to age-related hearing impairment (ARHI). Nine subsamples, collected by nine audiological centers across Europe, added up to a total of 4,083 subjects between 53 and 67 years. Audiometric data (pure-tone average [PTA]) were collected and the participants filled out a questionnaire on environmental risk factors and medical history. People with a history of disease that could affect hearing were excluded. PTAs were adjusted for age and sex and tested for association with exposure to risk factors. Noise exposure was associated with a significant loss of hearing at high sound frequencies (>1 kHz). Smoking significantly increased high-frequency hearing loss, and the effect was dose-dependent. The effect of smoking remained significant when accounting for cardiovascular disease events. Taller people had better hearing on average with a more pronounced effect at low sound frequencies (<2 kHz). A high body mass index (BMI) correlated with hearing loss across the frequency range tested. Moderate alcohol consumption was inversely correlated with hearing loss. Significant associations were found in the high as well as in the low frequencies. The results suggest that a healthy lifestyle can protect against age-related hearing impairment.


Journal of Medical Genetics | 2012

Phenotypic spectrum of the SMAD3-related aneurysms–osteoarthritis syndrome

Ingrid van de Laar; Denise van der Linde; Edwin H. G. Oei; P.K. Bos; Johannes H.J.M. Bessems; Sita M. A. Bierma-Zeinstra; Belle L. van Meer; Gerard Pals; Rogier A. Oldenburg; Jos A. Bekkers; Adriaan Moelker; Bianca M. de Graaf; Gabor Matyas; Ingrid M.E. Frohn-Mulder; Janneke Timmermans; Yvonne Hilhorst-Hofstee; Jan Maarten Cobben; Hennie T. Brüggenwirth; Lut Van Laer; Bart Loeys; Julie De Backer; Paul Coucke; Harry C. Dietz; Patrick J. Willems; Ben A. Oostra; Anne De Paepe; Jolien W. Roos-Hesselink; Aida M. Bertoli-Avella; Marja W. Wessels

Background Aneurysms–osteoarthritis syndrome (AOS) is a new autosomal dominant syndromic form of thoracic aortic aneurysms and dissections characterised by the presence of arterial aneurysms and tortuosity, mild craniofacial, skeletal and cutaneous anomalies, and early-onset osteoarthritis. AOS is caused by mutations in the SMAD3 gene. Methods A cohort of 393 patients with aneurysms without mutation in FBN1, TGFBR1 and TGFBR2 was screened for mutations in SMAD3. The patients originated from The Netherlands, Belgium, Switzerland and USA. The clinical phenotype in a total of 45 patients from eight different AOS families with eight different SMAD3 mutations is described. In all patients with a SMAD3 mutation, clinical records were reviewed and extensive genetic, cardiovascular and orthopaedic examinations were performed. Results Five novel SMAD3 mutations (one nonsense, two missense and two frame-shift mutations) were identified in five new AOS families. A follow-up description of the three families with a SMAD3 mutation previously described by the authors was included. In the majority of patients, early-onset joint abnormalities, including osteoarthritis and osteochondritis dissecans, were the initial symptom for which medical advice was sought. Cardiovascular abnormalities were present in almost 90% of patients, and involved mainly aortic aneurysms and dissections. Aneurysms and tortuosity were found in the aorta and other arteries throughout the body, including intracranial arteries. Of the patients who first presented with joint abnormalities, 20% died suddenly from aortic dissection. The presence of mild craniofacial abnormalities including hypertelorism and abnormal uvula may aid the recognition of this syndrome. Conclusion The authors provide further insight into the phenotype of AOS with SMAD3 mutations, and present recommendations for a clinical work-up.


Nature Genetics | 2012

Mutations in the TGF-β Repressor SKI Cause Shprintzen-Goldberg Syndrome with Aortic Aneurysm

Alexander J. Doyle; Jefferson J. Doyle; Seneca L. Bessling; Samantha Maragh; Mark E. Lindsay; Dorien Schepers; Elisabeth Gillis; Geert Mortier; Tessa Homfray; Kimberly Sauls; Russell A. Norris; Nicholas D Huso; Dan Leahy; David W Mohr; Mark J. Caulfield; Alan F. Scott; A Destree; Raoul C. M. Hennekam; Pamela Arn; Cynthia J. Curry; Lut Van Laer; Andrew S. McCallion; Bart Loeys; Harry C. Dietz

Elevated transforming growth factor (TGF)-β signaling has been implicated in the pathogenesis of syndromic presentations of aortic aneurysm, including Marfan syndrome (MFS) and Loeys-Dietz syndrome (LDS). However, the location and character of many of the causal mutations in LDS intuitively imply diminished TGF-β signaling. Taken together, these data have engendered controversy regarding the specific role of TGF-β in disease pathogenesis. Shprintzen-Goldberg syndrome (SGS) has considerable phenotypic overlap with MFS and LDS, including aortic aneurysm. We identified causative variation in ten individuals with SGS in the proto-oncogene SKI, a known repressor of TGF-β activity. Cultured dermal fibroblasts from affected individuals showed enhanced activation of TGF-β signaling cascades and higher expression of TGF-β–responsive genes relative to control cells. Morpholino-induced silencing of SKI paralogs in zebrafish recapitulated abnormalities seen in humans with SGS. These data support the conclusions that increased TGF-β signaling is the mechanism underlying SGS and that high signaling contributes to multiple syndromic presentations of aortic aneurysm.


Human Molecular Genetics | 2009

GRM7 variants confer susceptibility to age-related hearing impairment

Rick A. Friedman; Lut Van Laer; Matthew J. Huentelman; Sonal S. Sheth; Els Van Eyken; Jason J. Corneveaux; Waibhav Tembe; Rebecca F. Halperin; Ashley Q. Thorburn; Sofie Thys; Sarah Bonneux; Erik Fransen; Jeroen R. Huyghe; Ilmari Pyykkö; C.W.R.J. Cremers; H. Kremer; Ingeborg Dhooge; Dafydd Stephens; Eva Orzan; Markus Pfister; Michael Bille; Agnete Parving; Martti Sorri; Paul Van de Heyning; Linna Makmura; Jeffrey D. Ohmen; Frederick H. Linthicum; Jose N. Fayad; John V. Pearson; David Craig

Age-related hearing impairment (ARHI), or presbycusis, is the most prevalent sensory impairment in the elderly. ARHI is a complex disease caused by an interaction between environmental and genetic factors. Here we describe the results of the first whole genome association study for ARHI. The study was performed using 846 cases and 846 controls selected from 3434 individuals collected by eight centers in six European countries. DNA pools for cases and controls were allelotyped on the Affymetrix 500K GeneChip for each center separately. The 252 top-ranked single nucleotide polymorphisms (SNPs) identified in a non-Finnish European sample group (1332 samples) and the 177 top-ranked SNPs from a Finnish sample group (360 samples) were confirmed using individual genotyping. Subsequently, the 23 most interesting SNPs were individually genotyped in an independent European replication group (138 samples). This resulted in the identification of a highly significant and replicated SNP located in GRM7, the gene encoding metabotropic glutamate receptor type 7. Also in the Finnish sample group, two GRM7 SNPs were significant, albeit in a different region of the gene. As the Finnish are genetically distinct from the rest of the European population, this may be due to allelic heterogeneity. We performed histochemical studies in human and mouse and showed that mGluR7 is expressed in hair cells and in spiral ganglion cells of the inner ear. Together these data indicate that common alleles of GRM7 contribute to an individuals risk of developing ARHI, possibly through a mechanism of altered susceptibility to glutamate excitotoxicity.


Circulation Research | 2013

Genetics of thoracic aortic aneurysm: at the crossroad of transforming growth factor-β signaling and vascular smooth muscle cell contractility.

Elisabeth Gillis; Lut Van Laer; Bart Loeys

Aortic aneurysm, including both abdominal aortic aneurysm and thoracic aortic aneurysm, is the cause of death of 1% to 2% of the Western population. This review focuses only on thoracic aortic aneurysms and dissections. During the past decade, the genetic contribution to the pathogenesis of thoracic aortic aneurysms and dissections has revealed perturbed extracellular matrix signaling cascade interactions and deficient intracellular components of the smooth muscle contractile apparatus as the key mechanisms. Based on the study of different Marfan mouse models and the discovery of several novel thoracic aortic aneurysm genes, the involvement of the transforming growth factor-β signaling pathway has opened unexpected new avenues. Overall, these discoveries have 3 important consequences. First, the pathogenesis of thoracic aortic aneurysms and dissections is better understood, although some controversy still exists. Second, the management strategies for the medical and surgical treatment of thoracic aortic aneurysms and dissections are becoming increasingly gene-tailored. Third, the pathogenetic insights have delivered new treatment options that are currently being investigated in large clinical trials.


Journal of the American College of Cardiology | 2015

Mutations in a TGF-β Ligand, TGFB3, Cause Syndromic Aortic Aneurysms and Dissections

Aida M. Bertoli-Avella; Elisabeth Gillis; Hiroko Morisaki; J.M.A. Verhagen; Bianca M. de Graaf; Gerarda van de Beek; Elena Gallo; Boudewijn P.T. Kruithof; Hanka Venselaar; Loretha Myers; Steven Laga; Alexander J. Doyle; Gretchen Oswald; Gert W A van Cappellen; Itaru Yamanaka; Robert M. van der Helm; Berna Beverloo; Annelies de Klein; Luba M. Pardo; Martin Lammens; Christina Evers; Koenraad Devriendt; Michiel Dumoulein; Janneke Timmermans; Hennie T. Brüggenwirth; Frans W. Verheijen; Inez Rodrigus; Gareth Baynam; Marlies Kempers; Johan Saenen

Background Aneurysms affecting the aorta are a common condition associated with high mortality as a result of aortic dissection or rupture. Investigations of the pathogenic mechanisms involved in syndromic types of thoracic aortic aneurysms, such as Marfan and Loeys-Dietz syndromes, have revealed an important contribution of disturbed transforming growth factor (TGF)-β signaling. Objectives This study sought to discover a novel gene causing syndromic aortic aneurysms in order to unravel the underlying pathogenesis. Methods We combined genome-wide linkage analysis, exome sequencing, and candidate gene Sanger sequencing in a total of 470 index cases with thoracic aortic aneurysms. Extensive cardiological examination, including physical examination, electrocardiography, and transthoracic echocardiography was performed. In adults, imaging of the entire aorta using computed tomography or magnetic resonance imaging was done. Results Here, we report on 43 patients from 11 families with syndromic presentations of aortic aneurysms caused by TGFB3 mutations. We demonstrate that TGFB3 mutations are associated with significant cardiovascular involvement, including thoracic/abdominal aortic aneurysm and dissection, and mitral valve disease. Other systemic features overlap clinically with Loeys-Dietz, Shprintzen-Goldberg, and Marfan syndromes, including cleft palate, bifid uvula, skeletal overgrowth, cervical spine instability and clubfoot deformity. In line with previous observations in aortic wall tissues of patients with mutations in effectors of TGF-β signaling (TGFBR1/2, SMAD3, and TGFB2), we confirm a paradoxical up-regulation of both canonical and noncanonical TGF-β signaling in association with up-regulation of the expression of TGF-β ligands. Conclusions Our findings emphasize the broad clinical variability associated with TGFB3 mutations and highlight the importance of early recognition of the disease because of high cardiovascular risk.


Journal of the American College of Cardiology | 2012

Aggressive Cardiovascular Phenotype of Aneurysms-Osteoarthritis Syndrome Caused by Pathogenic SMAD3 Variants

Denise van der Linde; Ingrid van de Laar; Aida M. Bertoli-Avella; Rogier A. Oldenburg; Jos A. Bekkers; Francesco Mattace-Raso; Anton H. van den Meiracker; Adriaan Moelker; Fop van Kooten; Ingrid M.E. Frohn-Mulder; Janneke Timmermans; Els Moltzer; Jan Maarten Cobben; Lut Van Laer; Bart Loeys; Julie De Backer; Paul Coucke; Anne De Paepe; Yvonne Hilhorst-Hofstee; Marja W. Wessels; Jolien W. Roos-Hesselink

OBJECTIVES The purpose of this study was describe the cardiovascular phenotype of the aneurysms-osteoarthritis syndrome (AOS) and to provide clinical recommendations. BACKGROUND AOS, caused by pathogenic SMAD3 variants, is a recently described autosomal dominant syndrome characterized by aneurysms and arterial tortuosity in combination with osteoarthritis. METHODS AOS patients in participating centers underwent extensive cardiovascular evaluation, including imaging, arterial stiffness measurements, and biochemical studies. RESULTS We included 44 AOS patients from 7 families with pathogenic SMAD3 variants (mean age: 42 ± 17 years). In 71%, an aortic root aneurysm was found. In 33%, aneurysms in other arteries in the thorax and abdomen were diagnosed, and in 48%, arterial tortuosity was diagnosed. In 16 patients, cerebrovascular imaging was performed, and cerebrovascular abnormalities were detected in 56% of them. Fifteen deaths occurred at a mean age of 54 ± 15 years. The main cause of death was aortic dissection (9 of 15; 60%), which occurred at mildly increased aortic diameters (range: 40 to 63 mm). Furthermore, cardiac abnormalities were diagnosed, such as congenital heart defects (6%), mitral valve abnormalities (51%), left ventricular hypertrophy (19%), and atrial fibrillation (22%). N-terminal brain natriuretic peptide (NT-proBNP) was significantly higher in AOS patients compared with matched controls (p < 0.001). Aortic pulse wave velocity was high-normal (9.2 ± 2.2 m/s), indicating increased aortic stiffness, which strongly correlated with NT-proBNP (r = 0.731, p = 0.005). CONCLUSIONS AOS predisposes patients to aggressive and widespread cardiovascular disease and is associated with high mortality. Dissections can occur at relatively mildly increased aortic diameters; therefore, early elective repair of the ascending aorta should be considered. Moreover, cerebrovascular abnormalities were encountered in most patients.


Advances in Experimental Medicine and Biology | 2014

Loeys-Dietz Syndrome

Lut Van Laer; Harry C. Dietz; Bart Loeys

Loeys-Dietz syndrome is an autosomal dominant aortic aneurysm syndrome characterized by multisystemic involvement. The most typical clinical triad includes hypertelorism, bifid uvula or cleft palate and aortic aneurysm with tortuosity. Natural history is significant for aortic dissection at smaller aortic diameter and arterial aneurysms throughout the arterial tree. The genetic cause is heterogeneous and includes mutations in genes encoding for components of the transforming growth factor beta (TGFβ) signalling pathway: TGFBR1, TGFBR2, SMAD3 and TGFB2. Despite the loss of function nature of these mutations, the patient-derived aortic tissues show evidence of increased (rather than decreased) TGFβ signalling. These insights offer new options for therapeutic interventions.

Collaboration


Dive into the Lut Van Laer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul Coucke

Ghent University Hospital

View shared research outputs
Top Co-Authors

Avatar

Anne De Paepe

Ghent University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Harry C. Dietz

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge