Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lutz Ahrens is active.

Publication


Featured researches published by Lutz Ahrens.


Chemosphere | 2010

Distribution of polyfluoroalkyl compounds in water, suspended particulate matter and sediment from Tokyo Bay, Japan

Lutz Ahrens; Sachi Taniyasu; Leo W. Y. Yeung; Nobuyoshi Yamashita; Paul K.S. Lam; Ralf Ebinghaus

This study examined the environmental behaviour and fate of polyfluoroalkyl compounds (PFCs) found in water, suspended particulate matter (SPM) and sediment. The sampling of the sediment was performed at two stations from Tokyo Bay, Japan, in 2008. In addition, a depth profile of seawater was collected at three water layers from both sampling stations. The summation operatorPFC concentrations ranged from 16.7 to 42.3ngL(-1) in the water column, from 6.4 to 15.1ngg(-1) dry weight (dw) in the SPM fraction and from 0.29 to 0.36dw in surface sediment. The distribution of PFCs was found to depend on their physicochemical characteristics. While short-chain perfluoroalkyl carboxylic acids (PFCAs) (C<7) were exclusively detected in the dissolved phase, longer-chain PFCAs (C7), perfluoroalkyl sulfonates (PFSAs), ethylperfluorooctane sulfonamidoacetic acid (EtFOSAA), and perfluorooctane sulfonamide (PFOSA) appeared to bind more strongly to particles. Results showed that the sorption of PFCs on SPM increases by 0.52-0.75 log units for each additional CF(2) moiety and that the sorption of PFSAs was 0.71-0.76 log units higher compared to the PFCA analogs. In addition, the sorption of PFCs was influenced by the organic carbon content. These data are essential for modelling the transport and environmental fate of PFCs.


Marine Pollution Bulletin | 2009

Polyfluorinated compounds in waste water treatment plant effluents and surface waters along the River Elbe, Germany

Lutz Ahrens; Sebastian Felizeter; Renate Sturm; Zhiyong Xie; Ralf Ebinghaus

Polyfluorinated compounds (PFCs) were investigated in waste water treatment plant (WWTP) effluents and surface waters of the River Elbe from samples collected in 2007. Concentrations of various PFCs, including C(4)-C(8) perfluorinated sulfonates (PFSAs), C(6) and C(8) perfluorinated sulfinates, 6:2 fluorotelomer sulfonate, C(5)-C(13) perfluorinated carboxylic acids (PFCAs), C(4) and C(8) perfluoroalkyl sulfonamides and 6:2, 8:2 and 10:2 unsaturated fluorotelomercarboxylic acids were quantified. Sum PFC concentrations of the river water ranged from 7.6 to 26.4ngL(-1), whereas sum PFC concentrations of WWTP effluents were approximately 5-10 times higher (30.5-266.3ngL(-1)), indicating that WWTPs are potential sources of PFCs in the marine environment. PFC patterns of different WWTP effluents varied depending on the origin of the waste water, whereas the profile of PFC composition in the river water was relatively constant. In both kinds of water samples, perfluorooctanoic acid (PFOA) was the major PFC, whereas perfluorobutane sulfonate (PFBS) was the predominant PFSA.


Environmental Pollution | 2010

Distribution and sources of polyfluoroalkyl substances (PFAS) in the River Rhine watershed

Axel Möller; Lutz Ahrens; Renate Surm; Joke W. Westerveld; Frans van der Wielen; Ralf Ebinghaus; Pim de Voogt

The concentration profile of 40 polyfluoroalkyl substances (PFAS) in surface water along the River Rhine watershed from the Lake Constance to the North Sea was investigated. The aim of the study was to investigate the influence of point as well as diffuse sources, to estimate fluxes of PFAS into the North Sea and to identify replacement compounds of perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA). In addition, an interlaboratory comparison of the method performance was conducted. The PFAS pattern was dominated by perfluorobutane sulfonate (PFBS) and perfluorobutanoic acid (PFBA) with concentrations up to 181 ng/L and 335 ng/L, respectively, which originated from industrial point sources. Fluxes of SigmaPFAS were estimated to be approximately 6 tonnes/year which is much higher than previous estimations. Both, the River Rhine and the River Scheldt, seem to act as important sources of PFAS into the North Sea.


Environmental Pollution | 2010

Polyfluoroalkyl compounds in landfill leachates.

Jan Busch; Lutz Ahrens; Renate Sturm; Ralf Ebinghaus

Polyfluoroalkyl compounds (PFCs) are widely used in industry and consumer products. These products could end up finally in landfills where their leachates are a potential source for PFCs into the aqueous environment. In this study, samples of untreated and treated leachate from 22 landfill sites in Germany were analysed for 43 PFCs. SigmaPFC concentrations ranged from 31 to 12,819 ng/L in untreated leachate and 4-8060 ng/L in treated leachate. The dominating compounds in untreated leachate were perfluorobutanoic acid (PFBA) (mean contribution 27%) and perfluorobutane sulfonate (PFBS) (24%). The discharge of PFCs into the aqueous environment depended on the cleaning treatment systems. Membrane treatments (reverse osmosis and nanofiltrations) and activated carbon released lower concentrations of PFCs into the environment than cleaning systems using wet air oxidation or only biological treatment. The mass flows of summation operatorPFCs into the aqueous environment ranged between 0.08 and 956 mg/day.


Environmental Science & Technology | 2011

Wastewater Treatment Plant and Landfills as Sources of Polyfluoroalkyl Compounds to the Atmosphere

Lutz Ahrens; Mahiba Shoeib; Tom Harner; Sum Chi Lee; Rui Guo; Eric J. Reiner

Polyfluoroalkyl compounds (PFCs) were determined in air around a wastewater treatment plant (WWTP) and two landfill sites using sorbent-impregnated polyurethane foam (SIP) disk passive air samplers in summer 2009. The samples were analyzed for five PFC classes (i.e., fluorotelomer alcohols (FTOHs), perfluorooctane sulfonamides (FOSAs), sulfonamidoethanols (FOSEs), perfluoroalkyl sulfonic acids (PFSAs), and perfluoroalkyl carboxylic acids (PFCAs)) to investigate their concentration in air, composition and emissions to the atmosphere. ∑PFC concentrations in air were 3-15 times higher within the WWTP (2280-24 040 pg/m(3)) and 5-30 times higher at the landfill sites (2780-26 430 pg/m(3)) compared to the reference sites (597-1600 pg/m3). Variations in the PFC pattern were observed between the WWTP and landfill sites and even within the WWTP site. For example, FTOHs were the predominant PFC class in air for all WWTP and landfill sites, with 6:2 FTOH as the dominant compound at the WWTP (895-12 290 pg/m(3)) and 8:2 FTOH dominating at the landfill sites (1290-17 380 pg/m(3)). Furthermore, perfluorooctane sulfonic acid (PFOS) was dominant within the WWTP (43-171 pg/m(3)), followed by perfluorobutanoic acid (PFBA) (55-116 pg/m(3)), while PFBA was dominant at the landfill sites (101-102 pg/m(3)). It is also noteworthy that the PFCA concentrations decreased with increasing chain length and that the emissions for the even chain length PFCAs outweighed emissions for the odd chain length compounds. Furthermore, highly elevated PFC concentrations were found near the aeration tanks compared to the other tanks (i.e., primary and secondary clarifier) and likely associated with increased volatilization during aeration that may be further enhanced through aqueous aerosol-mediated transport. ∑PFC yearly emissions estimated using a simplified dispersion model were 2560 g/year for the WWTP, 99 g/year for landfill site 1, and 1000 g/year for landfill site 2. These results highlight the important role of WWTPs and landfills as emission sources of PFCs to the atmosphere.


Environmental Science & Technology | 2011

Brominated flame retardants in seawater and atmosphere of the Atlantic and the Southern Ocean.

Zhiyong Xie; Axel Möller; Lutz Ahrens; Renate Sturm; Ralf Ebinghaus

Seawater and air samples were collected aboard the FS Polarstern during the cruises ANT-XXV/1 + 2 in the Atlantic and Southern Ocean in 2008. The particulate and dissolved phase in water and particulate and gaseous phase in air were analyzed separately for nine polybrominated diphenyl ethers (PBDEs) and six non-PBDE brominated flame retardants (BFRs). Air concentrations of 2,3-dibromopropyl-2,4,6-tribromophenyl ether (DPTE) and hexabromobenzene (HBB) in the gaseous and particulate phase (median = 0.56 pg m(-3) for DPTE and 0.92 pg m(-3) for HBB) were comparable to ∑(9)PBDEs (1.0 pg m(-3)). Pentabromotoluene (PBT) was detectable in ∼30% of the gaseous phase samples, whereas concentration of 2,4,6-tribromophenyl allylether (ATE), hexachlorocyclopentenyl-dibromocyclooctane (HCDBCO) and 2-ethyl-1-hexyl 2,3,4,5-tetrabromobenzoate (EHTBB) were below their method detection limits. DPTE, and PBDEs were also found in seawater at low pg per liter levels. Elevated seawater concentrations of PBDEs and DPTE were measured in the English Channel and close to South African coast. Concentrations of DPTE, BDE-47, and BDE-99 in the atmosphere generally decreased from Europe toward the Southern Ocean, whereas no latitudinal trend was observed in seawater. Air-water exchange gradients suggested net deposition dominates for all selected substances. The medians of net deposition fluxes for the air-water gas exchange were 83, 21, 69, 20, and 781 pg m(-2) day(-1) for BDE-47, BDE-100, BDE-99, DPTE, and HBB, whereas medians of dry deposition fluxes were 2.0, 0.3, 1.2, 1.0, and 0.5 pg m(-2) day(-1) for BDE-47, BDE-100, BDE-99, DPTE, and HBB. Overall, these results highlight the important role of the long-range atmospheric transport of PBDE and non-PBDE BFRs to remote regions.


Chemosphere | 2010

Distribution of perfluoroalkyl compounds in seawater from northern Europe, Atlantic Ocean, and Southern Ocean.

Lutz Ahrens; Zhiyong Xie; Ralf Ebinghaus

The global distribution of perfluoroalkyl compounds (PFCs) were investigated in surface water samples collected onboard the Polarstern in Northern Europe, Atlantic and Southern Ocean (52 degrees N-69 degrees S) in 2008. The water samples were solid-phase extracted with Oasis WAX cartridges and analysed using the high-performance liquid chromatography interfaced to tandem mass spectrometry. Concentrations of various PFCs, including C(4), C(6), C(8) perfluoroalkyl sulfonates (PFSAs), perfluorooctane sulfinate (PFOSi), C(5)-C(12) perfluoroalkyl carboxylic acids (PFCA) and perfluorooctane sulfonamide (FOSA) were quantified. Perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) were the predominant compounds with a maximum concentration of 232 and 223pgL(-1), respectively. Results indicate that industrial areas like the European Continent act as source of PFCs, while ocean water is an important as a sink as well as the transport medium of these compounds. Interestingly, in the equator area the summation operatorPFC concentration increased, which indicates that there exists an atmospheric or other unknown input source of PFCs. In the Southern Ocean only PFOS was detected which could be caused by atmospheric transport of its precursors.


Chemosphere | 2011

Partitioning of perfluorooctanoate (PFOA), perfluorooctane sulfonate (PFOS) and perfluorooctane sulfonamide (PFOSA) between water and sediment.

Lutz Ahrens; Leo W. Y. Yeung; Sachi Taniyasu; Paul K.S. Lam; Nobuyoshi Yamashita

Laboratory partitioning experiments were conducted to elucidate the sorption behaviour and partitioning of perfluoroalkyl compounds (PFCs). Three different sediment types were used and separately spiked with perfluorooctanoate (PFOA), perfluorooctane sulfonate (PFOS) and perfluorooctane sulfonamide (PFOSA) at low environmentally realistic concentrations. PFOA, PFOS and PFOSA were mainly distributed in the dissolved phase at low suspended solid concentrations, indicating their long-range transport potential in the marine environment. In all cases, the equilibrium isotherms were linear and the organic carbon normalised partition coefficients (K(OC)) decreased in the following order: PFOSA (log K(OC) = 4.1 ± 0.35 cm³ g⁻¹)>PFOS (3.7 ± 0.56 cm³ g⁻¹) > PFOA (2.4 ± 0.12 cm³ g⁻¹). The level of organic content had a significant influence on the partitioning. For the sediment with negligible organic content the density of the sediment became the most important factor influencing the partitioning. Ultimately, data on the partitioning of PFCs between aqueous media and suspended solids are essential for modelling their transport and environmental fate.


Environmental Toxicology and Chemistry | 2014

Fate and effects of poly‐ and perfluoroalkyl substances in the aquatic environment: A review

Lutz Ahrens; Mirco Bundschuh

Polyfluoroalkyl and perfluoroalkyl substances (PFASs) are distributed ubiquitously in the aquatic environment, which raises concern for the flora and fauna in hydrosystems. The present critical review focuses on the fate and adverse effects of PFASs in the aquatic environment. The PFASs are continuously emitted into the environment from point and nonpoint sources such as sewage treatment plants and atmospheric deposition, respectively. Although concentrations of single substances may be too low to cause adverse effects, their mixtures can be of significant environmental concern. The production of C8 -based PFASs (i.e., perfluorooctane sulfonate [PFOS] and perfluorooctanoate [PFOA]) is largely phased out; however, the emissions of other PFASs, in particular short-chain PFASs and PFAS precursors, are increasing. The PFAS precursors can finally degrade to persistent degradation products, which are, in particular, perfluoroalkane sulfonates (PFSAs) and perfluoroalkyl carboxylates (PFCAs). In the environment, PFSAs and PFCAs are subject to partitioning processes, whereby short-chain PFSAs and PFCAs are mainly distributed in the water phase, whereas long-chain PFSAs and PFCAs tend to bind to particles and have a substantial bioaccumulation potential. However, there are fundamental knowledge gaps about the interactive toxicity of PFAS precursors and their persistent degradation products but also interactions with other natural and anthropogenic stressors. Moreover, because of the continuous emission of PFASs, further information about their ecotoxicological potential among multiple generations, species interactions, and mixture toxicity seems fundamental to reliably assess the risks for PFASs to affect ecosystem structure and function in the aquatic environment.


Marine Pollution Bulletin | 2009

Total body burden and tissue distribution of polyfluorinated compounds in harbor seals (Phoca vitulina) from the German Bight.

Lutz Ahrens; Ursula Siebert; Ralf Ebinghaus

Total body burden and tissue distribution of polyfluorinated compounds (PFCs) were investigated in harbor seals (Phoca vitulina) from the German Bight in 2007. A total number of 18 individual PFCs from the following groups could be quantified in the different tissues: perfluorinated carboxylic acids (PFCAs) and perfluorinated sulfonates (PFSAs) and their precursors perfluorinated sulfinates (PFSiAs), perfluorinated sulfonamides, and sulfonamido ethanols. Perfluorooctanesulfonate (PFOS) was the predominant compound in all measured seal tissues (up to 1665 ng g(-1) wet weight in liver tissue). The dominant PFCAs were perfluorononanoic acid (PFNA) and perfluorodecanoic acid (PFDA), but their concentrations were much lower compared to PFOS. The mean whole body burden in harbor seals of all detected PFCs was estimated to be 2665+/-1207 microg absolute. The major amount of the total PFCs burden in the bodies was in blood (38%) and liver (36%), followed by muscle (13%), lung (8%), kidney (2%), blubber (2%), heart (1%), brain (1%), thymus (<0.01%) and thyroid (<0.01%). These data suggest large differences in body burden and accumulation pattern of PFCs in marine mammals.

Collaboration


Dive into the Lutz Ahrens's collaboration.

Top Co-Authors

Avatar

Karin Wiberg

Swedish University of Agricultural Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sarah Josefsson

Swedish University of Agricultural Sciences

View shared research outputs
Top Co-Authors

Avatar

Jakob Gustavsson

Swedish University of Agricultural Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Minh Anh Nguyen

Swedish University of Agricultural Sciences

View shared research outputs
Top Co-Authors

Avatar

Erik Ribéli

Swedish University of Agricultural Sciences

View shared research outputs
Top Co-Authors

Avatar

Meritxell Gros

Swedish University of Agricultural Sciences

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge