Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sarah Josefsson is active.

Publication


Featured researches published by Sarah Josefsson.


Chemosphere | 2015

Stockholm Arlanda Airport as a source of per- and polyfluoroalkyl substances to water, sediment and fish.

Lutz Ahrens; Karin Norström; Tomas Viktor; Anna Palm Cousins; Sarah Josefsson

Fire training facilities are potential sources of per- and polyfluoroalkyl substances (PFASs) to the nearby environment due to the usage of PFAS-containing aqueous fire-fighting foams (AFFFs). The multimedia distribution of perfluoroalkyl carboxylates (PFCAs), perfluoroalkyl sulfonates (PFSAs), perfluorooctanesulfonamide (PFOSA) and 6:2 fluorotelomer sulfonate (FTSA) was investigated near a fire training facility at Stockholm Arlanda Airport in Sweden. The whole body burden of PFASs in European perch (Perca fluviatilis) was 334±80μg absolute and was distributed as follows: Gonad>liver≈muscle>blood>gill. The bioconcentration factor (BCF) and sediment/water partition coefficient (Kd) increased by 0.6-1.7 and 0.2-0.5 log units, respectively, for each additional CF2 moiety for PFCAs and PFSAs. PFAS concentrations in water showed no significant decreasing trend between 2009 and 2013 (p>0.05), which indicates that Stockholm Arlanda Airport may be an important source for long-term contamination of the nearby environment with PFASs.


Environmental Science & Technology | 2010

Bioturbation-Driven Release of Buried PCBs and PBDEs from Different Depths in Contaminated Sediments

Sarah Josefsson; Kjell Leonardsson; Jonas S. Gunnarsson; Karin Wiberg

Bioturbation can remobilize previously buried contaminants, leading to an increased exposure of aquatic biota. The remobilization of buried polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) from three different sediment depth layers (2.0-2.5 cm, 5.0-5.5 cm, and 10.0-10.5 cm) was studied in a laboratory experiment with two benthic macrofauna species, the amphipod Monoporeia affinis and the polychaete Marenzelleria spp. Remobilization of PCBs and PBDEs was significantly higher in the presence of Marenzelleria spp. than in M. affinis treatments and controls (without macrofauna). The highest remobilization occurred from the most shallow layers (2.0-2.5 cm > 5.0-5.5 cm > 10.0-10.5 cm), but contaminants were remobilized due to bioturbation from layers down to at least 10 cm. Congeners with lower hydrophobicity were remobilized to a higher extent than more hydrophobic congeners. The contaminant distribution between the particulate and the dissolved phase in the water column depended on hydrophobicity and burial depth of the contaminant, with congeners from deeper layers displaying an increased distribution to the particulate phase. Release fluxes and sediment-to-water mass transfer coefficients (MTCs) show that bioturbation by the polychaete Marenzelleria spp. can lead to a significant remobilization of buried contaminants from Baltic Sea sediments.


Environmental Science & Technology | 2014

Native Oxy-PAHs, N-PACs, and PAHs in Historically Contaminated Soils from Sweden, Belgium, and France : Their Soil-Porewater Partitioning Behavior, Bioaccumulation in Enchytraeus crypticus, and Bioavailability

Hans Peter H. Arp; Staffan Lundstedt; Sarah Josefsson; Gerard Cornelissen; Anja Enell; Ann-Sofie Allard; Dan Berggren Kleja

Soil quality standards are based on partitioning and toxicity data for laboratory-spiked reference soils, instead of real world, historically contaminated soils, which would be more representative. Here 21 diverse historically contaminated soils from Sweden, Belgium, and France were obtained, and the soil-porewater partitioning along with the bioaccumulation in exposed worms (Enchytraeus crypticus) of native polycyclic aromatic compounds (PACs) were quantified. The native PACs investigated were polycyclic aromatic hydrocarbons (PAHs) and, for the first time to be included in such a study, oxygenated-PAHs (oxy-PAHs) and nitrogen containing heterocyclic PACs (N-PACs). The passive sampler polyoxymethylene (POM) was used to measure the equilibrium freely dissolved porewater concentration, Cpw, of all PACs. The obtained organic carbon normalized partitioning coefficients, KTOC, show that sorption of these native PACs is much stronger than observed in laboratory-spiked soils (typically by factors 10 to 100), which has been reported previously for PAHs but here for the first time for oxy-PAHs and N-PACs. A recently developed KTOC model for historically contaminated sediments predicted the 597 unique, native KTOC values in this study within a factor 30 for 100% of the data and a factor 3 for 58% of the data, without calibration. This model assumes that TOC in pyrogenic-impacted areas sorbs similarly to coal tar, rather than octanol as typically assumed. Black carbon (BC) inclusive partitioning models exhibited substantially poorer performance. Regarding bioaccumulation, Cpw combined with liposome-water partition coefficients corresponded better with measured worm lipid concentrations, Clipid (within a factor 10 for 85% of all PACs and soils), than Cpw combined with octanol-water partition coefficients (within a factor 10 for 76% of all PACs and soils). E. crypticus mortality and reproducibility were also quantified. No enhanced mortality was observed in the 21 historically contaminated soils despite expectations from PAH spiked reference soils. Worm reproducibility weakly correlated to Clipid of PACs, though the contributing influence of metal concentrations and soil texture could not be taken into account. The good agreement of POM-derived Cpw with independent soil and lipid partitioning models further supports that soil risk assessments would improve by accounting for bioavailability. Strategies for including bioavailability in soil risk assessment are presented.


Environmental Science & Technology | 2012

Capping Efficiency of Various Carbonaceous and Mineral Materials for In Situ Remediation of Polychlorinated Dibenzo-p-dioxin and Dibenzofuran Contaminated Marine Sediments : Sediment-to-Water Fluxes and Bioaccumulation in Boxcosm Tests

Sarah Josefsson; Morten Schaanning; Göran Samuelsson; Jonas S. Gunnarsson; Ida Olofsson; Espen Eek; Karin Wiberg

The efficiency of thin-layer capping in reducing sediment-to-water fluxes and bioaccumulation of polychlorinated dibenzo-p-dioxins and dibenzofurans, hexachlorobenzene, and octachlorostyrene was investigated in a boxcosm experiment. The influence of cap thickness (0.5-5 cm) and different cap materials was tested using a three-factor experimental design. The cap materials consisted of a passive material (coarse or fine limestone or a marine clay) and an active material (activated carbon (AC) or kraft lignin) to sequester the contaminants. The cap thickness and the type of active material were significant factors, whereas no statistically significant effects of the type of passive material were observed. Sediment-to-water fluxes and bioaccumulation by the two test species, the surface-dwelling Nassarius nitidus and the deep-burrowing Nereis spp., decreased with increased cap thickness and with addition of active material. Activated carbon was more efficient than lignin, and a ~90% reduction of fluxes and bioaccumulation was achieved with 3 cm caps with 3.3% AC. Small increases in fluxes with increased survival of Nereis spp. indicated that bioturbation by Nereis spp. affected the fluxes.


Chemosphere | 2011

Structure-related distribution of PCDD/Fs, PCBs and HCB in a river-sea system

Sarah Josefsson; O. Magnus Karlsson; J. Mikael Malmaeus; Gerard Cornelissen; Karin Wiberg

Water concentrations of PCDD/Fs, HCB, and non-ortho, mono-ortho, and non-dioxin-like PCBs were measured four times during 1 year in a coastal area of the Baltic Sea, to investigate background levels and distribution behaviour. Sampling sites included two rivers, an estuary, and the sea. Particulate and apparently dissolved concentrations were determined using active sampling (filters+PUFs), while freely dissolved concentrations were determined using passive sampling (POM-samplers). The distribution between particulate+colloidal and freely dissolved phases, in the form of TOC-normalized distribution ratios (K(TOC)), was found to be near or at equilibrium. The observed K(TOC) were not significantly different between sampling sites or seasons. For PCDD/Fs, the concentrations were significantly correlated to suspended particulate matter (SPM), while no correlation to organic carbon (TOC) was observed. In the estuary and the sea, PCB concentrations were correlated to TOC. The sorption of various congeners to SPM and TOC appeared to be related to both hydrophobicity and 3D-structure. The PCDD/F concentration in the sea decreased to one third in May, likely connected to the increased vertical flux of particles during the spring bloom.


Science of The Total Environment | 2014

Using soil function evaluation in multi-criteria decision analysis for sustainability appraisal of remediation alternatives

Yevheniya Volchko; Jenny Norrman; Lars Rosén; Magnus Bergknut; Sarah Josefsson; Tore Söderqvist; Tommy Norberg; Karin Wiberg; Mats Tysklind

Soil contamination is one of the major threats constraining proper functioning of the soil and thus provision of ecosystem services. Remedial actions typically only address the chemical soil quality by reducing total contaminant concentrations to acceptable levels guided by land use. However, emerging regulatory requirements on soil protection demand a holistic view on soil assessment in remediation projects thus accounting for a variety of soil functions. Such a view would require not only that the contamination concentrations are assessed and attended to, but also that other aspects are taking into account, thus addressing also physical and biological as well as other chemical soil quality indicators (SQIs). This study outlines how soil function assessment can be a part of a holistic sustainability appraisal of remediation alternatives using multi-criteria decision analysis (MCDA). The paper presents a method for practitioners for evaluating the effects of remediation alternatives on selected ecological soil functions using a suggested minimum data set (MDS) containing physical, biological and chemical SQIs. The measured SQIs are transformed into sub-scores by the use of scoring curves, which allows interpretation and the integration of soil quality data into the MCDA framework. The method is demonstrated at a study site (Marieberg, Sweden) and the results give an example of how soil analyses using the suggested MDS can be used for soil function assessment and subsequent input to the MCDA framework.


Chemosphere | 2011

Influence of contaminant burial depth on the bioaccumulation of PCBs and PBDEs by two benthic invertebrates (Monoporeia affinis and Marenzelleria spp.)

Sarah Josefsson; Kjell Leonardsson; Jonas S. Gunnarsson; Karin Wiberg

The bioaccumulation of buried polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) added to specific depths in sediment (2.0-2.5, 5.0-5.5 and 10.0-10.5cm) was studied in two infaunal species with similar feeding habits (surface deposit-feeders) but different bioturbation modes. The deep-burrowing polychaetes Marenzelleria spp. (Mz) displayed up to 36 times higher tissue concentrations of buried (spiked) contaminants than the surface-dwelling biodiffusing amphipod Monoporeia affinis. The differences in bioaccumulation were most pronounced for less hydrophobic contaminants due to the bioirrigating activity of Mz. Contaminants buried at shallow depths displayed higher accumulation than more deeply buried contaminants. In contrast, the bioaccumulation of unspiked (native) contaminants with a uniform vertical distribution in the sediment was similar between the species. For Mz, the BSAFs increased with increased K(OW) for the uniformly distributed contaminants, but decreased for the buried contaminants, which indicates that the dominant uptake routes of the buried contaminants can differ from the uniformly distributed contaminants. The surface sediment concentration of buried contaminants increased in Mz treatments, showing that Mz bioturbation can remobilize historically buried contaminants to the biologically active surface layer and increase the exposure for surface-dwelling species.


Science of The Total Environment | 2016

Fate of pharmaceuticals and pesticides in fly larvae composting

Cecilia Lalander; Jenna Senecal; M. Gros Calvo; Lutz Ahrens; Sarah Josefsson; Karin Wiberg; Björn Vinnerås

A novel and efficient organic waste management strategy currently gaining great attention is fly larvae composting. High resource recovery efficiency can be achieved in this closed-looped system, but pharmaceuticals and pesticides in waste could potentially accumulate in every loop of the treatment system and spread to the environment. This study evaluated the fate of three pharmaceuticals (carbamazepine, roxithromycin, trimethoprim) and two pesticides (azoxystrobin, propiconazole) in a fly larvae composting system and in a control treatment with no larvae. It was found that the half-life of all five substances was shorter in the fly larvae compost (<10% of control) and no bioaccumulation was detected in the larvae. Fly larvae composting could thus impede the spread of pharmaceuticals and pesticides into the environment.


Environmental Science & Technology | 2016

Persistent Organic Pollutants in Streamwater: Influence of Hydrological Conditions and Landscape Type

Sarah Josefsson; Magnus Bergknut; Martyn N. Futter; Stina Jansson; Hjalmar Laudon; Lisa Lundin; Karin Wiberg

Concentrations of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), polychlorinated biphenyls (PCBs), and hexachlorobenzene (HCB) in streamwater were measured in a remote catchment in northern Sweden and downstream to the Baltic Sea. Sampling took place at seven sites during two years and under different hydrological conditions: during the snow-free, snow-covered, and spring-flood seasons. Concentrations varied substantially between seasons and were up to 20 times higher during the spring flood compared to the preceding snow-covered period. The increase in concentrations with runoff was due to higher levels of particle-associated contaminants, while the dissolved concentrations remained stable. Particulate-contaminant concentrations were positively correlated primarily to suspended particulate matter (SPM) at sites in areas with a high land-cover fraction of sorted sediment. When upstream sampling locations were compared, a mire-dominated stream had higher concentrations and a lower retention of atmospherically deposited contaminants than a forest stream of the same catchment size. Contaminant concentrations (normalized to volume) did not increase consistently downstream despite the presence of several point sources. However, when normalized to the amount of SPM, concentrations were on average >20 times higher at the outlet in the Baltic Sea compared to the outlet from the remote catchment without point sources.


Chemosphere | 2015

Determination of polyoxymethylene (POM) - water partition coefficients for oxy-PAHs and PAHs

Sarah Josefsson; Hans Peter H. Arp; Dan Berggren Kleja; Anja Enell; Staffan Lundstedt

Oxygenated polycyclic aromatic hydrocarbons (oxy-PAHs) are a class of ubiquitously occurring pollutants of which little is known. They can be co-emitted with PAHs or formed from PAHs in the environment. The environmental fate and risk of oxy-PAHs are difficult to assess due to a lack of methods to quantify their pore water concentrations. One sampler that can be used to determine freely dissolved concentrations of organic contaminants is polyoxymethylene (POM). In this study, POM - water partition coefficients (KPOM) were determined for 11 oxy-PAHs. KPOM values of 8 PAHs with similar hydrophobicities as the oxy-PAHs were determined for comparison. Results showed that logKPOM values ranged from 2.64 to 4.82 for the PAHs (2-4 rings), similar to previously determined values. LogKPOM values for investigated oxy-PAHs ranged from 0.96 to 5.36. The addition of carbonylic oxygen on a parent PAH generally lowered KPOM by 0.5 to 1.0 log units, which is attributable to the presence of carbonylic oxygens increasing water solubility. The KPOM values presented here will facilitate simultaneous assessments of freely dissolved water concentrations of oxy-PAHs and PAHs in environmental media.

Collaboration


Dive into the Sarah Josefsson's collaboration.

Top Co-Authors

Avatar

Karin Wiberg

Swedish University of Agricultural Sciences

View shared research outputs
Top Co-Authors

Avatar

Lutz Ahrens

Swedish University of Agricultural Sciences

View shared research outputs
Top Co-Authors

Avatar

Jakob Gustavsson

Swedish University of Agricultural Sciences

View shared research outputs
Top Co-Authors

Avatar

Minh Anh Nguyen

Swedish University of Agricultural Sciences

View shared research outputs
Top Co-Authors

Avatar

Erik Ribéli

Swedish University of Agricultural Sciences

View shared research outputs
Top Co-Authors

Avatar

Dan Berggren Kleja

Swedish University of Agricultural Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gerard Cornelissen

Norwegian University of Life Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge