Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lutz Roewer is active.

Publication


Featured researches published by Lutz Roewer.


International Journal of Legal Medicine | 1997

Evaluation of Y-chromosomal STRs: a multicenter study

Manfred Kayser; A. Caglià; Daniel Corach; Neale Fretwell; Christian Gehrig; G. Graziosi; F. Heidorn; S. Herrmann; B. Herzog; M. Hidding; Katsuya Honda; Mark A. Jobling; Michael Krawczak; K. Leim; S. Meuser; Eckhard Meyer; W. Oesterreich; Arpita Pandya; Walther Parson; G. Penacino; A. Perez-Lezaun; A. Piccinini; Mechthild Prinz; Cornelia Schmitt; Peter M. Schneider; Reinhard Szibor; J. Teifel-Greding; G. Weichhold; P. de Knijff; Lutz Roewer

Abstract A multicenter study has been carried out to characterize 13 polymorphic short tandem repeat (STR) systems located on the male specific part of the human Y chromosome (DYS19, DYS288, DYS385, DYS388, DYS389I/II, DYS390, DYS391, DYS392, DYS393, YCAI, YCAII, YCAIII, DXYS156Y). Amplification parameters and electrophoresis protocols including multiplex approaches were compiled. The typing of non-recombining Y loci with uniparental inheritance requires special attention to population substructuring due to prevalent male lineages. To assess the extent of these subheterogeneities up to 3825 unrelated males were typed in up to 48 population samples for the respective loci. A consistent repeat based nomenclature for most of the loci has been introduced. Moreover we have estimated the average mutation rate for DYS19 in 626 confirmed father-son pairs as 3.2 × 10–3 (95% confidence interval limits of 0.00041–0.00677), a value which can also be expected for other Y-STR loci with similar repeat structure. Recommendations are given for the forensic application of a basic set of 7 STRs (DYS19, DYS389I, DYS389II, DYS390, DYS391, DYS392, DYS393) for standard Y-haplotyping in forensic and paternity casework. We recommend further the inclusion of the highly polymorphic bilocal Y-STRs DYS385, YCAII, YCAIII for a nearly complete individualisation of almost any given unrelated male individual. Together, these results suggest that Y-STR loci are useful markers to identify males and male lineages in forensic practice.


American Journal of Human Genetics | 2000

Y-Chromosomal Diversity in Europe Is Clinal and Influenced Primarily by Geography, Rather than by Language

Zoë H. Rosser; Tatiana Zerjal; Matthew E. Hurles; Maarja Adojaan; Dragan Alavantic; António Amorim; William Amos; Manuel Armenteros; Eduardo Arroyo; Guido Barbujani; G. Beckman; L. Beckman; Jaume Bertranpetit; Elena Bosch; Daniel G. Bradley; Gaute Brede; Gillian Cooper; Helena B.S.M. Côrte-Real; Peter de Knijff; Ronny Decorte; Yuri E. Dubrova; Oleg V. Evgrafov; Anja Gilissen; Sanja Glisic; Mukaddes Gölge; Emmeline W. Hill; Anna Jeziorowska; Luba Kalaydjieva; Manfred Kayser; Toomas Kivisild

Clinal patterns of autosomal genetic diversity within Europe have been interpreted in previous studies in terms of a Neolithic demic diffusion model for the spread of agriculture; in contrast, studies using mtDNA have traced many founding lineages to the Paleolithic and have not shown strongly clinal variation. We have used 11 human Y-chromosomal biallelic polymorphisms, defining 10 haplogroups, to analyze a sample of 3,616 Y chromosomes belonging to 47 European and circum-European populations. Patterns of geographic differentiation are highly nonrandom, and, when they are assessed using spatial autocorrelation analysis, they show significant clines for five of six haplogroups analyzed. Clines for two haplogroups, representing 45% of the chromosomes, are continentwide and consistent with the demic diffusion hypothesis. Clines for three other haplogroups each have different foci and are more regionally restricted and are likely to reflect distinct population movements, including one from north of the Black Sea. Principal-components analysis suggests that populations are related primarily on the basis of geography, rather than on the basis of linguistic affinity. This is confirmed in Mantel tests, which show a strong and highly significant partial correlation between genetics and geography but a low, nonsignificant partial correlation between genetics and language. Genetic-barrier analysis also indicates the primacy of geography in the shaping of patterns of variation. These patterns retain a strong signal of expansion from the Near East but also suggest that the demographic history of Europe has been complex and influenced by other major population movements, as well as by linguistic and geographic heterogeneities and the effects of drift.


American Journal of Human Genetics | 2000

Characteristics and frequency of germline mutations at microsatellite loci from the human Y chromosome, as revealed by direct observation in father/son pairs.

Manfred Kayser; Lutz Roewer; Minttu Hedman; Lotte Henke; Jürgen Henke; Silke Brauer; Carmen Krüger; Michael Krawczak; Marion Nagy; Tadeusz Dobosz; Reinhard Szibor; Peter de Knijff; Mark Stoneking; Antti Sajantila

A number of applications of analysis of human Y-chromosome microsatellite loci to human evolution and forensic science require reliable estimates of the mutation rate and knowledge of the mutational mechanism. We therefore screened a total of 4,999 meioses from father/son pairs with confirmed paternity (probability >/=99. 9%) at 15 Y-chromosomal microsatellite loci and identified 14 mutations. The locus-specific mutation-rate estimates were 0-8. 58x10-3, and the average mutation rate estimates were 3.17x10-3 (95% confidence interval [CI] 1.89-4.94x10-3) across 8 tetranucleotide microsatellites and 2.80x10-3 (95% CI 1.72-4.27x10-3) across all 15 Y-chromosomal microsatellites studied. Our data show a mutational bias toward length increase, on the basis of observation of more repeat gains than losses (10:4). The data are in almost complete agreement with the stepwise-mutation model, with 13 single-repeat changes and 1 double-repeat change. Sequence analysis revealed that all mutations occurred in uninterrupted homogenous arrays of >/=11 repeats. We conclude that mutation rates and characteristics of human Y-chromosomal microsatellites are consistent with those of autosomal microsatellites. This indicates that the general mutational mechanism of microsatellites is independent of recombination.


International Journal of Legal Medicine | 1997

Chromosome Y microsatellites : population genetic and evolutionary aspects

P. de Knijff; Manfred Kayser; A. Caglià; Daniel Corach; Neale Fretwell; Christian Gehrig; G. Graziosi; F. Heidorn; S. Herrmann; B. Herzog; M. Hidding; Katsuya Honda; Mark A. Jobling; Michael Krawczak; K. Leim; S. Meuser; Eckhard Meyer; W. Oesterreich; Arpita Pandya; Walther Parson; G. Penacino; A. Perez-Lezaun; A. Piccinini; Mechthild Prinz; Cornelia Schmitt; Peter M. Schneider; Reinhard Szibor; J. Teifel-Greding; G. Weichhold; Lutz Roewer

Abstract By means of a multicenter study, a large number of males have been characterized for Y-chromosome specific short tandem repeats (STRs) or microsatellites. A complete summary of the allele frequency distributions for these Y-STRs is presented in the Appendix. This manuscript describes in more detail some of the population genetic and evolutionary aspects for a restricted set of seven chromosome Y STRs in a selected number of population samples. For all the chromosome Y STRs markedly different region-specific allele frequency distributions were observed, also when closely related populations were compared. Haplotype analyses using AMOVA showed that when four different European male groups (Germans, Dutch, Swiss, Italians) were compared, less than 10% of the total genetic variability was due to differences between these populations. Nevertheless, these pairwise comparisons revealed significant differences between most population pairs. Assuming a step-wise mutation model and a mutation frequency of 0.21%, it was estimated that chromosome Y STR-based evolutionary lines of descent can be reliably inferred over a time-span of only 1950 generations (or about 49000 years). This reduces the reliability of the inference of population affinities to a historical, rather than evolutionary time scale. This is best illustrated by the construction of a human evolutionary tree based on chromosome Y STRs in which most of the branches connect in a markedly different way compared with trees based on classical protein polymorphisms and/or mtDNA sequence variation. Thus, the chromosome Y STRs seem to be very useful in comparing closely related populations which cannot probably be separated by e.g. autosomal STRs. However, in order to be used in an evolutionary context they need to be combined with more stable Y-polymorphisms e.g. base-substitutions.


Forensic Science International | 2001

DNA Commission of the International Society of Forensic Genetics: recommendations on forensic analysis using Y- chromosome STRs

Peter Gill; Charles H. Brenner; B. Brinkmann; Bruce Budowle; Angel Carracedo; Mark A. Jobling; P. de Knijff; Manfred Kayser; Michael Krawczak; W. R. Mayr; Niels Morling; B. Olaisen; Vincenzo Lorenzo Pascali; Mechthild Prinz; Lutz Roewer; Peter M. Schneider; Antti Sajantila; Chris Tyler-Smith

During the past few years the DNA commission of the International Society of Forensic Genetics has published a series of documents providing guidelines and recommendations concerning the application of DNA polymorphisms to the problems of human identification. This latest report addresses a relatively new area, namely Y-chromosome polymorphisms, with particular emphasis on short tandem repeats (STRs). This report addresses nomenclature, use of allelic ladders, population genetics and reporting methods.


Forensic Science International-genetics | 2010

Publication of population data for forensic purposes

Angel Carracedo; John M. Butler; Leonor Gusmão; Walther Parson; Lutz Roewer; Peter M. Schneider

In 2000 a new policy concerning the publication of population genetic data was set up in Forensic Science International [1] with the introduction of a new section entitled ‘‘Announcement of population data’’. The idea was to facilitate the publication of this type of data since the use of reliable allele or haplotype frequency estimates of the polymorphisms is a requirement in most countries, both in forensic and in paternity cases. Announcements of population data consisted in short communications under a fixed format, avoiding the repetition of superfluous information (i.e., materials and methods) and concentrating the message on the key information needed for the use of genetic data for forensic and population genetics. In our opinion, this type of paper completely fulfilled the aims of the editors and, even more importantly, has made an essential contribution to the dissemination of common standards all over the world. In addition they have motivated forensic practitioners (especially in countries with little development in forensic genetics) to introduce themselves in forensic research. With the launch of the new journal, we decided to continue the same policy as a first step but keeping in mind that we have to move forward to increase the quality of the journal and to avoid having a journal exclusively devoted to announcements of population genetic data. The number of population genetic papers from the very beginning has continuously increased, representing now more than 60% of the submissions to the journal. Therefore, it is time to raise the threshold regarding the acceptance of this type of publication but taking into account the importance of the dissemination of standards and the motivation that this type of research represents for some groups and countries. For this reason, we have decided to move to a next step and to introduce a new section on Forensic Population Genetics in the journal. Manuscripts with population genetic content can be submitted to this section at http://www.ees.elsevier.com/fsigen/ using three types of formats: Forensic Population Genetics – Original papers: in this section full length papers on relevant population genetics issues of forensic interest will be considered for publication. The data should be original, the population genetic analysis must be of the highest quality and the data should have forensic relevance beyond the scope of simply reporting allele or haplotype frequencies. Forensic Population Genetics – Short communications: understanding that both the quality of population data and the relevance of results are crucial, short communications will have the format of the former ‘‘Announcements of population data’’ with some changes (see below) in order to guarantee their quality.


American Journal of Human Genetics | 2010

Mutability of Y-chromosomal microsatellites: rates, characteristics, molecular bases, and forensic implications.

Kaye N. Ballantyne; Miriam Goedbloed; Rixun Fang; Onno Schaap; Oscar Lao; Andreas Wollstein; Ying Choi; Kate van Duijn; Mark Vermeulen; Silke Brauer; Ronny Decorte; Micaela Poetsch; Nicole von Wurmb-Schwark; Peter de Knijff; Damian Labuda; Hélène Vézina; Hans Knoblauch; Rüdiger Lessig; Lutz Roewer; Rafał Płoski; Tadeusz Dobosz; Lotte Henke; Jürgen Henke; Manohar R. Furtado; Manfred Kayser

Nonrecombining Y-chromosomal microsatellites (Y-STRs) are widely used to infer population histories, discover genealogical relationships, and identify males for criminal justice purposes. Although a key requirement for their application is reliable mutability knowledge, empirical data are only available for a small number of Y-STRs thus far. To rectify this, we analyzed a large number of 186 Y-STR markers in nearly 2000 DNA-confirmed father-son pairs, covering an overall number of 352,999 meiotic transfers. Following confirmation by DNA sequence analysis, the retrieved mutation data were modeled via a Bayesian approach, resulting in mutation rates from 3.78 × 10(-4) (95% credible interval [CI], 1.38 × 10(-5) - 2.02 × 10(-3)) to 7.44 × 10(-2) (95% CI, 6.51 × 10(-2) - 9.09 × 10(-2)) per marker per generation. With the 924 mutations at 120 Y-STR markers, a nonsignificant excess of repeat losses versus gains (1.16:1), as well as a strong and significant excess of single-repeat versus multirepeat changes (25.23:1), was observed. Although the total repeat number influenced Y-STR locus mutability most strongly, repeat complexity, the length in base pairs of the repeated motif, and the fathers age also contributed to Y-STR mutability. To exemplify how to practically utilize this knowledge, we analyzed the 13 most mutable Y-STRs in an independent sample set and empirically proved their suitability for distinguishing close and distantly related males. This finding is expected to revolutionize Y-chromosomal applications in forensic biology, from previous male lineage differentiation toward future male individual identification.


American Journal of Human Genetics | 2001

An Extensive Analysis of Y-Chromosomal Microsatellite Haplotypes in Globally Dispersed Human Populations

Manfred Kayser; Michael Krawczak; Laurent Excoffier; Patrick Dieltjes; Daniel Corach; Vincente Pascali; Christian Gehrig; Luigi F. Bernini; Jørgen Jespersen; Egbert Bakker; Lutz Roewer; Peter de Knijff

The genetic variance at seven Y-chromosomal microsatellite loci (or short tandem repeats [STRs]) was studied among 986 male individuals from 20 globally dispersed human populations. A total of 598 different haplotypes were observed, of which 437 (73.1%) were each found in a single male only. Population-specific haplotype-diversity values were.86-.99. Analyses of haplotype diversity and population-specific haplotypes revealed marked population-structure differences between more-isolated indigenous populations (e.g., Central African Pygmies or Greenland Inuit) and more-admixed populations (e.g., Europeans or Surinamese). Furthermore, male individuals from isolated indigenous populations shared haplotypes mainly with male individuals from their own population. By analysis of molecular variance, we found that 76.8% of the total genetic variance present among these male individuals could be attributed to genetic differences between male individuals who were members of the same population. Haplotype sharing between populations, phi(ST) statistics, and phylogenetic analysis identified close genetic affinities among European populations and among New Guinean populations. Our data illustrate that Y-chromosomal STR haplotypes are an ideal tool for the study of the genetic affinities between groups of male subjects and for detection of population structure.


Human Genetics | 2005

Signature of recent historical events in the European Y-chromosomal STR haplotype distribution

Lutz Roewer; Peter J. P. Croucher; Sascha Willuweit; Tim Lu; Manfred Kayser; Rüdiger Lessig; Peter de Knijff; Mark A. Jobling; Chris Tyler-Smith; Michael Krawczak

Previous studies of human Y-chromosomal single-nucleotide polymorphisms (Y-SNPs) established a link between the extant Y-SNP haplogroup distribution and the prehistoric demography of Europe. By contrast, our analysis of seven rapidly evolving Y-chromosomal short tandem repeat loci (Y-STRs) in over 12,700 samples from 91 different locations in Europe reveals a signature of more recent historic events, not previously detected by other genetic markers. Cluster analysis based upon molecular variance yields two clearly identifiable sub-clusters of Western and Eastern European Y-STR haplotypes, and a diverse transition zone in central Europe, where haplotype spectra change more rapidly with longitude than with latitude. This and other observed patterns of Y-STR similarity may plausibly be related to particular historical incidents, including, for example, the expansion of the Franconian and Ottoman Empires. We conclude that Y-STRs may be capable of resolving male genealogies to an unparalleled degree and could therefore provide a useful means to study local population structure and recent demographic history.


Forensic Science International-genetics | 2013

New guidelines for the publication of genetic population data.

Angel Carracedo; John M. Butler; Leonor Gusmão; Adrian Linacre; Walther Parson; Lutz Roewer; Peter M. Schneider

In 2000 a new policy concerning the publication of population genetic data was set up in Forensic Science International [1] with the introduction of a new section entitled ‘‘Announcement of population data’’. Subsequently in 2010 [2] a new section on ‘‘Forensic Population Genetics’’ was introduced, and recommendations were redefined. FSI: Genetics is one of the few journals still considering population genetic data for publication and we strongly believe that this policy has contributed to the dissemination of common standards in the field all over the world and also to motivate labs and people to embark in research in the area of forensic genetics. For this reason it is our intention to continue with this policy, and recently an associate editor exclusively devoted to this topic was appointed to the journal. Despite having defined a more detailed procedure for acceptance, our journal is still receiving a massive number of submissions of varying quality in this area. Therefore it has become necessary to raise the threshold regarding the acceptance of this type of publication to ensure a high standard of published data. In addition we want to improve the submission, reviewing and publication procedures, and to correct some aspects that we have detected such as the obligation to meet ethical standards in the collection of samples including informed consent and approval by ethical committees. For this reason, we have decided to publish new guidelines for the publication of population genetic data in the journal.

Collaboration


Dive into the Lutz Roewer's collaboration.

Top Co-Authors

Avatar

Manfred Kayser

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chris Tyler-Smith

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Walther Parson

Innsbruck Medical University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge