Luuk A.M. van der Wielen
Delft University of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Luuk A.M. van der Wielen.
Applied Microbiology and Biotechnology | 2008
Carol A. Roa Engel; Adrie J. J. Straathof; Tiemen W. Zijlmans; Walter M. van Gulik; Luuk A.M. van der Wielen
The potential of fumaric acid as a raw material in the polymer industry and the increment of cost of petroleum-based fumaric acid raises interest in fermentation processes for production of this compound from renewable resources. Although the chemical process yields 112% w/w fumaric acid from maleic anhydride and the fermentation process yields only 85% w/w from glucose, the latter raw material is three times cheaper. Besides, the fermentation fixes CO2. Production of fumaric acid by Rhizopus species and the involved metabolic pathways are reviewed. Submerged fermentation systems coupled with product recovery techniques seem to have achieved economically attractive yields and productivities. Future prospects for improvement of fumaric acid production include metabolic engineering approaches to achieve low pH fermentations.
Applied Microbiology and Biotechnology | 2005
Adrie J. J. Straathof; Susana Sie; Telma Teixeira Franco; Luuk A.M. van der Wielen
Acrylic acid might become an important target for fermentative production from sugars on bulk industrial scale, as an alternative to its current production from petrochemicals. Metabolic engineering approaches will be required to develop a host microorganism that may enable such a fermentation process. Hypothetical metabolic pathways for insertion into a host organism are discussed. The pathway should have plausible mass and redox balances, plausible biochemistry, and plausible energetics, while giving the theoretically maximum yield of acrylate on glucose without the use of aeration or added electron acceptors. Candidate metabolic pathways that might lead to the theoretically maximum yield proceed via β-alanine, methylcitrate, or methylmalonate-CoA. The energetics and enzymology of these pathways, including product excretion, should be studied in more detail to confirm this. Expression of the selected pathway in a host organism will require extensive genetic engineering. A 100,000-tons/year fermentation process for acrylic acid production, including product recovery, was conceptually designed based on the supposition that an efficient host organism for acrylic acid production can indeed be developed. The designed process is economically competitive when compared to the current petrochemical process for acrylic acid. Although the designed process is highly speculative, it provides a clear incentive for development of the required microbial host, especially considering the environmental sustainability of the designed process.
Journal of Chromatography A | 2010
Beckley K. Nfor; Marc Noverraz; Sreekanth Chilamkurthi; Peter D. E. M. Verhaert; Luuk A.M. van der Wielen; Marcel Ottens
The thermodynamic modeling of protein adsorption on mixed-mode adsorbents functionalized with ligands carrying both hydrophobic and electrostatic groups was undertaken. The developed mixed mode isotherm was fitted with protein adsorption data obtained for five different proteins on four different mixed mode adsorbents by 96-well microtitre plate high throughput batch experiments on a robotic workstation. The developed mixed mode isotherm was capable of describing the adsorption isotherms of all five proteins (having widely different molecular masses and iso-electric points) on the four mixed mode adsorbents and over a wide range of salt concentrations and solution pH, and provided a unique set of physically meaningful parameters for each resin-protein-pH combination. The model could capture the typically observed minimum in mixed mode protein adsorption and predict the precise salt concentration at which this minimum occurs. The possibility of predicting the salt concentration at which minimum protein binding occurs presents new opportunities for designing better elution strategies in mixed mode protein chromatography. Salt-protein interactions were shown to have important consequences on mixed mode protein adsorption when they occur. Finally, the mixed mode isotherm also gave very good fit with literature data of BSA adsorption on a different mixed mode adsorbent not examined in this study. Hence, the mixed mode isotherm formalism presented in this study can be used with any mixed mode adsorbent having the hydrophobic and electrostatic functional groups. It also provides the basis for detailed modeling and optimization of mixed mode chromatographic separation of proteins.
Trends in Biotechnology | 2009
Beckley K. Nfor; Peter D. E. M. Verhaert; Luuk A.M. van der Wielen; Jürgen Hubbuch; Marcel Ottens
Current biopharmaceutical manufacturing strongly relies on using purification platform processes, offering harmonization of practices and speed-to-market. However, the ability of such processes to respond quickly to anticipated higher quality and capacity demands is under question. Here, we describe novel approaches for purification process development that incorporate biothermodynamics, modern high throughput experimentation and simulation tools. Such development leads to production platform-specific databases containing thermodynamic protein descriptors of major host cell proteins over a range of experimental conditions. This will pave the way for in silico purification process development, providing better process understanding and the potential to respond quickly to product quality and market demands. Future efforts will focus on improving this field further and enabling more rationale in process development.
Enzyme and Microbial Technology | 2011
Carol A. Roa Engel; Walter M. van Gulik; Leonie Marang; Luuk A.M. van der Wielen; Adrie J. J. Straathof
Dicarboxylic acids that are produced from renewable resources are becoming attractive building blocks for the polymers industry. In this respect, fumaric acid is very interesting. Its low aqueous solubility facilitates product recovery. To avoid excessive waste salt production during downstream processing, a low pH for fumaric acid fermentation will be beneficial. Studying the influence of pH, working volume and shaking frequency on cell cultivation helped us to identify the best conditions to obtain appropriate pellet morphologies of a wild type strain of Rhizopus oryzae. Using these pellets, the effects of pH and CO(2) addition were studied to determine the best conditions to produce fumaric acid in batch fermentations under nitrogen-limited conditions with glucose as carbon source. Decreasing either the fermentation pH below 5 or increasing the CO(2) content of the inlet air above 10% was unfavourable for the cell-specific productivity, fumaric acid yield, and fumaric acid titer. However, switching off the pH control late in the batch phase did not affect these performance parameters and allowed achieving pH of 3.6. A concentration of 20 gL(-1) of fumaric acid was obtained at pH 3.6 while the average cell mass specific productivity and fumaric acid yield were the same as at pH 5.0. Consequently, relatively modest amounts of inorganic base were required for pH control, while recovery of the acid should be relatively easy at pH 3.6.
Journal of Biotechnology | 2013
Urs von Stockar; Luuk A.M. van der Wielen
Equilibrium aspects in biotechnology and thermodynamics as the main theory underlying them have thus far received relatively little attention. As a consequence, design and development of biotechnogical processes is still carried out today in an relatively empirical way. For this situation to improve, a wider and more systematic use of the thermodynamic aspects pertaining to biotechnology must be encouraged. Recognizing this need, the ESF program on Process Integration in Biotechnology developed an intensive advanced course which was held twice so far. The present contribution uses the course structure in order to give a short overview of the field and to identify research needs. The development of a rigorous thermodynamic description, for the exceedingly complex world of biotechnology, is indeed one of the major challenges today in establishing the scientific basis for rational efficient, and fast bioprocess development and design.
Applied Microbiology and Biotechnology | 2006
Evelyn M. Buque-Taboada; Adrie J. J. Straathof; Joseph J. Heijnen; Luuk A.M. van der Wielen
The removal of inhibiting or degrading product from a bioreactor as soon as the product is formed is an important issue in industrial bioprocess development. In this review, the potential of crystallization as an in situ product removal (ISPR) technique for the biocatalytic production of crystalline compounds is discussed. The emphasis of this review is on the current status of crystalline product formation by metabolically active cells for application in fine-chemicals production. Examples of relevant biocatalytic conversions are summarized, and some basic process options are discussed. Furthermore, a case study is presented in which two conceptual process designs are compared. In one process, product formation and crystallization are integrated by applying ISPR, whereas a second, nonintegrated process is based on a known conventional process equivalent for the production of 6R-dihydro-oxoisophorone. The comparison indicates that employing ISPR leads to significant advantages over the nonintegrated case in terms of increased productivity and yield with a corresponding decrease in the number of downstream processing steps, as well as in the quantity of waste streams. This leads to an economically more interesting process alternative. Finally, a general outlook on the various research aspects of ISPR by crystallization is given.
Journal of Chromatography B: Biomedical Sciences and Applications | 1998
Mos van Berlo; Karel Ch. A. M. Luyben; Luuk A.M. van der Wielen
Aqueous two-phase systems (ATPSs) have great potential in the downstream processing of fermentation products. However, the consumption of large amounts of auxiliary materials limits application in industrial practice. Promising alternatives to the salts used so far are volatile salts such as ammonium bicarbonate and ammonium carbamate, which can be recycled to the extraction system as gaseous carbon dioxide and ammonia. In this work, it is demonstrated that ammonium carbamate in combination with poly(ethylene glycol) (PEG, molecular masses of 2000, 4000 and 10000) indeed produces aqueous two-phase systems (ATPSs) at a temperature of 25 degrees C and atmospheric pressure. Ammonium bicarbonate is clearly not suitable as a phase-forming salt, because of its too-low solubility in water.
Trends in Biotechnology | 2014
Arjan S. Heeres; Carolina Siqueira Franco Picone; Luuk A.M. van der Wielen; Rosiane Lopes da Cunha; Maria C. Cuellar
Isoprenoids and alkanes produced and secreted by microorganisms are emerging as an alternative biofuel for diesel and jet fuel replacements. In a similar way as for other bioprocesses comprising an organic liquid phase, the presence of microorganisms, medium composition, and process conditions may result in emulsion formation during fermentation, hindering product recovery. At the same time, a low-cost production process overcoming this challenge is required to make these advanced biofuels a feasible alternative. We review the main mechanisms and causes of emulsion formation during fermentation, because a better understanding on the microscale can give insights into how to improve large-scale processes and the process technology options that can address these challenges.
Biotechnology Progress | 2011
Beckley K. Nfor; Diego S. Zuluaga; Peter J.T. Verheijen; Peter D. E. M. Verhaert; Luuk A.M. van der Wielen; and Marcel Ottens
A model‐based rational strategy for the selection of chromatographic resins is presented. The main question being addressed is that of selecting the most optimal chromatographic resin from a few promising alternatives. The methodology starts with chromatographic modeling, parameters acquisition, and model validation, followed by model‐based optimization of the chromatographic separation for the resins of interest. Finally, the resins are rationally evaluated based on their optimized operating conditions and performance metrics such as product purity, yield, concentration, throughput, productivity, and cost. Resin evaluation proceeds by two main approaches. In the first approach, Pareto frontiers from multiobjective optimization of conflicting objectives are overlaid for different resins, enabling direct visualization and comparison of resin performances based on the feasible solution space. The second approach involves the transformation of the resin performances into weighted resin scores, enabling the simultaneous consideration of multiple performance metrics and the setting of priorities. The proposed model‐based resin selection strategy was illustrated by evaluating three mixed mode adsorbents (ADH, PPA, and HEA) for the separation of a ternary mixture of bovine serum albumin, ovalbumin, and amyloglucosidase. In order of decreasing weighted resin score or performance, the top three resins for this separation were ADH > PPA > HEA. The proposed model‐based approach could be a suitable alternative to column scouting during process development, the main strengths being that minimal experimentation is required and resins are evaluated under their ideal working conditions, enabling a fair comparison. This work also demonstrates the application of column modeling and optimization to mixed mode chromatography.