Peter D. E. M. Verhaert
Delft University of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Peter D. E. M. Verhaert.
Journal of Chromatography A | 2010
Beckley K. Nfor; Marc Noverraz; Sreekanth Chilamkurthi; Peter D. E. M. Verhaert; Luuk A.M. van der Wielen; Marcel Ottens
The thermodynamic modeling of protein adsorption on mixed-mode adsorbents functionalized with ligands carrying both hydrophobic and electrostatic groups was undertaken. The developed mixed mode isotherm was fitted with protein adsorption data obtained for five different proteins on four different mixed mode adsorbents by 96-well microtitre plate high throughput batch experiments on a robotic workstation. The developed mixed mode isotherm was capable of describing the adsorption isotherms of all five proteins (having widely different molecular masses and iso-electric points) on the four mixed mode adsorbents and over a wide range of salt concentrations and solution pH, and provided a unique set of physically meaningful parameters for each resin-protein-pH combination. The model could capture the typically observed minimum in mixed mode protein adsorption and predict the precise salt concentration at which this minimum occurs. The possibility of predicting the salt concentration at which minimum protein binding occurs presents new opportunities for designing better elution strategies in mixed mode protein chromatography. Salt-protein interactions were shown to have important consequences on mixed mode protein adsorption when they occur. Finally, the mixed mode isotherm also gave very good fit with literature data of BSA adsorption on a different mixed mode adsorbent not examined in this study. Hence, the mixed mode isotherm formalism presented in this study can be used with any mixed mode adsorbent having the hydrophobic and electrostatic functional groups. It also provides the basis for detailed modeling and optimization of mixed mode chromatographic separation of proteins.
Trends in Biotechnology | 2009
Beckley K. Nfor; Peter D. E. M. Verhaert; Luuk A.M. van der Wielen; Jürgen Hubbuch; Marcel Ottens
Current biopharmaceutical manufacturing strongly relies on using purification platform processes, offering harmonization of practices and speed-to-market. However, the ability of such processes to respond quickly to anticipated higher quality and capacity demands is under question. Here, we describe novel approaches for purification process development that incorporate biothermodynamics, modern high throughput experimentation and simulation tools. Such development leads to production platform-specific databases containing thermodynamic protein descriptors of major host cell proteins over a range of experimental conditions. This will pave the way for in silico purification process development, providing better process understanding and the potential to respond quickly to product quality and market demands. Future efforts will focus on improving this field further and enabling more rationale in process development.
Journal of Bacteriology | 2009
Loes E. Bevers; Martijn W. H. Pinkse; Peter D. E. M. Verhaert; Wilfred R. Hagen
The hydration of oleic acid into 10-hydroxystearic acid was originally described for a Pseudomonas cell extract almost half a century ago. In the intervening years, the enzyme has never been characterized in any detail. We report here the isolation and characterization of oleate hydratase (EC 4.2.1.53) from Elizabethkingia meningoseptica.
BioMed Research International | 2011
Inez Finoulst; Martijn W. H. Pinkse; William Van Dongen; Peter D. E. M. Verhaert
Although big progress has been made in sample pretreatment over the last years, there are still considerable limitations when it comes to overcoming complexity and dynamic range problems associated with peptide analyses from biological matrices. Being the little brother of proteomics, peptidomics is a relatively new field of research aiming at the direct analysis of the small proteins, called peptides, many of which are not amenable for typical trypsin-based analytics. In this paper, we present an overview of different techniques and methods currently used for reducing a samples complexity and for concentrating low abundant compounds to enable successful peptidome analysis. We focus on techniques which can be employed prior to liquid chromatography coupled to mass spectrometry for peptide detection and identification and indicate their advantages as well as their shortcomings when it comes to the untargeted analysis of native peptides from complex biological matrices.
Methods of Molecular Biology | 2010
Peter D. E. M. Verhaert; Martijn W. H. Pinkse; Kerstin Strupat; Maria C. Prieto Conaway
Several mass spectrometry imaging (MSI) procedures are used to localize physiologically active peptides in neuronal tissue from American cockroach (Periplaneta americana) neurosecretory organs. We report how to use this model system to assess, for the first time, the performance of the MALDI LTQ Orbitrap XL mass spectrometer to perform MSI of secretory neuropeptides. The method involves the following steps: (1) rapid dissecting of neurosecretory tissue (i.e., insect neurohemal organ) in isotonic sucrose solution; (2) mounting the tissue on a glass slide; (3) controlled spraying of the air-dried tissue with concentrated MALDI matrix solution; (4) loading specimen into the MALDI source of a MS(n) system equipped with an Orbitrap analyzer; (5) setting-up MSI methods by determining tissue areas of interest, spatial resolution, molecular mass range, and molecular mass resolution; (6) acquiring mass spectra; (7) analyzing data using ImageQuest MSI software to generate (single or composite) images of the distribution of peptide(s) of interest; (8) confirming the identity of selected peptides by MS(2) and/or MS( n ) sequencing directly from imaged tissue sample. The results illustrate that high mass accuracy and high mass resolving power of the Orbitrap analyzer are achievable in analyses directly from tissue, such as in MSI experiments. Moreover the mass spectrometric instrumentation evaluated allows for both peptide localization and peptide identification/sequencing directly from tissue.
Journal of Biological Chemistry | 2012
Wim Schepers; Griet Van Zeebroeck; Martijn W. H. Pinkse; Peter D. E. M. Verhaert; Johan M. Thevelein
Background: Activation of yeast trehalase has been a convenient read-out for nutrient signaling to PKA, but demonstration of phosphorylation in vivo is lacking. Results: Nutrient activation is associated with phosphorylation, but phosphorylation is not enough for activation. Conclusion: Nutrient activation of trehalase is a reliable read-out for nutrient activation of PKA in vivo. Significance: Nutrient-sensing mechanisms can be identified using trehalase activation as a read-out. The readdition of an essential nutrient to starved, fermenting cells of the yeast Saccharomyces cerevisiae triggers rapid activation of the protein kinase A (PKA) pathway. Trehalase is activated 5–10-fold within minutes and has been used as a convenient reporter for rapid activation of PKA in vivo. Although trehalase can be phosphorylated and activated by PKA in vitro, demonstration of phosphorylation during nutrient activation in vivo has been lacking. We now show, using phosphospecific antibodies, that glucose and nitrogen activation of trehalase in vivo is associated with phosphorylation of Ser21 and Ser83. Unexpectedly, mutants with reduced PKA activity show constitutive phosphorylation despite reduced trehalase activation. The same phenotype was observed upon deletion of the catalytic subunits of yeast protein phosphatase 2A, suggesting that lower PKA activity causes reduced trehalase dephosphorylation. Hence, phosphorylation of trehalase in vivo is not sufficient for activation. Deletion of the inhibitor Dcs1 causes constitutive trehalase activation and phosphorylation. It also enhances binding of trehalase to the 14-3-3 proteins Bmh1 and Bmh2, suggesting that Dcs1 inhibits by preventing 14-3-3 binding. Deletion of Bmh1 and Bmh2 eliminates both trehalase activation and phosphorylation. Our results reveal that trehalase activation in vivo is associated with phosphorylation of typical PKA sites and thus establish the enzyme as a reliable read-out for nutrient activation of PKA in vivo.
Biotechnology Progress | 2011
Beckley K. Nfor; Diego S. Zuluaga; Peter J.T. Verheijen; Peter D. E. M. Verhaert; Luuk A.M. van der Wielen; and Marcel Ottens
A model‐based rational strategy for the selection of chromatographic resins is presented. The main question being addressed is that of selecting the most optimal chromatographic resin from a few promising alternatives. The methodology starts with chromatographic modeling, parameters acquisition, and model validation, followed by model‐based optimization of the chromatographic separation for the resins of interest. Finally, the resins are rationally evaluated based on their optimized operating conditions and performance metrics such as product purity, yield, concentration, throughput, productivity, and cost. Resin evaluation proceeds by two main approaches. In the first approach, Pareto frontiers from multiobjective optimization of conflicting objectives are overlaid for different resins, enabling direct visualization and comparison of resin performances based on the feasible solution space. The second approach involves the transformation of the resin performances into weighted resin scores, enabling the simultaneous consideration of multiple performance metrics and the setting of priorities. The proposed model‐based resin selection strategy was illustrated by evaluating three mixed mode adsorbents (ADH, PPA, and HEA) for the separation of a ternary mixture of bovine serum albumin, ovalbumin, and amyloglucosidase. In order of decreasing weighted resin score or performance, the top three resins for this separation were ADH > PPA > HEA. The proposed model‐based approach could be a suitable alternative to column scouting during process development, the main strengths being that minimal experimentation is required and resins are evaluated under their ideal working conditions, enabling a fair comparison. This work also demonstrates the application of column modeling and optimization to mixed mode chromatography.
Journal of Bacteriology | 2010
Ana–Maria Sevcenco; Loes E. Bevers; Martijn W. H. Pinkse; Gerard C. Krijger; Hubert Th. Wolterbeek; Peter D. E. M. Verhaert; Wilfred R. Hagen; Peter Leon Hagedoorn
The hyperthermophilic archaeon Pyrococcus furiosus expresses five aldehyde oxidoreductase (AOR) enzymes, all containing a tungsto-bispterin cofactor. The growth of this organism is fully dependent on the presence of tungsten in the growth medium. Previous studies have suggested that molybdenum is not incorporated in the active site of these enzymes. Application of the radioisotope (99)Mo in metal isotope native radioautography in gel electrophoresis (MIRAGE) technology to P. furiosus shows that molybdenum can in fact be incorporated in all five AOR enzymes. Mo(V) signals characteristic for molybdopterin were observed in formaldehyde oxidoreductase (FOR) in electron paramagnetic resonance (EPR)-monitored redox titrations. Our finding that the aldehyde oxidation activity of FOR and WOR5 (W-containing oxidoreductase 5) correlates only with the residual tungsten content suggests that the Mo-containing AORs are most likely inactive. An observed W/Mo antagonism is indicative of tungstate-dependent negative feedback of the expression of the tungstate/molybdate ABC transporter. An intracellular selection mechanism for tungstate and molybdate processing has to be present, since tungsten was found to be preferentially incorporated into the AORs even under conditions with comparable intracellular concentrations of tungstate and molybdate. Under the employed growth conditions of starch as the main carbon source in a rich medium, no tungsten- and/or molybdenum-associated proteins are detected in P. furiosus other than the high-affinity transporter, the proteins of the metallopterin insertion machinery, and the five W-AORs.
Journal of Biological Inorganic Chemistry | 2009
Ana-Maria Sevcenco; Gerard C. Krijger; Martijn W. H. Pinkse; Peter D. E. M. Verhaert; Wilfred R. Hagen; Peter-Leon Hagedoorn
A combination of techniques to separate and quantify the native proteins associated with a particular transition metal ion from a cellular system has been developed. The procedure involves four steps: (1) labeling of the target proteins with a suitable short-lived radioisotope (suitable isotopes are 64Cu, 67Cu, 187W, 99Mo, 69Zn, 56Mn, 65Ni); (2) separation of intact soluble holoproteins using native isoelectric focusing combined with blue native polyacrylamide gel electrophoresis into native–native 2D gel electrophoresis; (3) spot visualization and quantification using autoradiography; and (4) protein identification with tandem mass spectrometry. The method was applied to the identification of copper proteins from a soluble protein extract of wild-type Escherichia coli K12 using the radioisotope 64Cu. The E. coli protein CueO, which has previously been only identified as a multicopper oxidase following homologous overexpression, was now directly detected as a copper protein against a wild-type background at an expression level of 0.007% of total soluble protein. The retention of the radioisotope by the copper proteins throughout the separation process corroborates the method to be genuinely native. The procedure developed here can be applied to cells of any origin, and to any metal having suitable radioisotopes. The finding that the periplasmic protein CueO is the only major form of soluble protein bound copper in E. coli strengthens the view that the bacterial periplasm contains only a few periplasmic copper proteins, and that the cytosol is devoid of copper proteins.
Biotechnology and Bioengineering | 2012
Beckley K. Nfor; Tangir Ahamed; Martijn W. H. Pinkse; Luuk A.M. van der Wielen; Peter D. E. M. Verhaert; Gijs W.K. van Dedem; Michel H.M. Eppink; Emile J.A.X. van de Sandt; Marcel Ottens
A multi‐dimensional fractionation and characterization scheme was developed for fast acquisition of the relevant molecular properties for protein separation from crude biological feedstocks by ion‐exchange chromatography (IEX), hydrophobic interaction chromatography (HIC), and size‐exclusion chromatography. In this approach, the linear IEX isotherm parameters were estimated from multiple linear salt‐gradient IEX data, while the nonlinear IEX parameters as well as the HIC isotherm parameters were obtained by the inverse method under column overloading conditions. Collected chromatographic fractions were analyzed by gel electrophoresis for estimation of molecular mass, followed by mass spectrometry for protein identification. The usefulness of the generated molecular properties data for rational decision‐making during downstream process development was equally demonstrated. Monoclonal antibody purification from crude hybridoma cell culture supernatant was used as case study. The obtained chromatographic parameters only apply to the employed stationary phases and operating conditions, hence prior high throughput screening of different chromatographic resins and mobile phase conditions is still a prerequisite. Nevertheless, it provides a quick, knowledge‐based approach for rationally synthesizing purification cascades prior to more detailed process optimization and evaluation. Biotechnol. Bioeng. 2012; 109: 3070–3083.