Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Luyun Zou is active.

Publication


Featured researches published by Luyun Zou.


Free Radical Biology and Medicine | 2011

Assessing bioenergetic function in response to oxidative stress by metabolic profiling

Brian P. Dranka; Gloria A. Benavides; Anne R. Diers; Samantha Giordano; Blake R. Zelickson; Colin Reily; Luyun Zou; John C. Chatham; Bradford G. Hill; Jianhua Zhang; Aimee Landar; Victor M. Darley-Usmar

It is now clear that mitochondria are an important target for oxidative stress in a broad range of pathologies, including cardiovascular disease, diabetes, neurodegeneration, and cancer. Methods for assessing the impact of reactive species on isolated mitochondria are well established but constrained by the need for large amounts of material to prepare intact mitochondria for polarographic measurements. With the availability of high-resolution polarography and fluorescence techniques for the measurement of oxygen concentration in solution, measurements of mitochondrial function in intact cells can be made. Recently, the development of extracellular flux methods to monitor changes in oxygen concentration and pH in cultures of adherent cells in multiple-sample wells simultaneously has greatly enhanced the ability to measure bioenergetic function in response to oxidative stress. Here we describe these methods in detail using representative cell types from renal, cardiovascular, nervous, and tumorigenic model systems while illustrating the application of three protocols to analyze the bioenergetic response of cells to oxidative stress.


American Journal of Physiology-heart and Circulatory Physiology | 2009

Glucosamine improves cardiac function following trauma-hemorrhage by increased protein O-GlcNAcylation and attenuation of NF-κB signaling

Luyun Zou; Shaolong Yang; Voraratt Champattanachai; Shunhua Hu; Irshad H. Chaudry; Richard B. Marchase; John C. Chatham

We have previously demonstrated that in a rat model of trauma-hemorrhage (T-H), glucosamine administration during resuscitation improved cardiac function, reduced circulating levels of inflammatory cytokines, and increased tissue levels of O-linked N-acetylglucosamine (O-GlcNAc) on proteins. The mechanism(s) by which glucosamine mediated its protective effect were not determined; therefore, the goal of this study was to test the hypothesis that glucosamine treatment attenuated the activation of the nuclear factor-kappaB (NF-kappaB) signaling pathway in the heart via an increase in protein O-GlcNAc levels. Fasted male rats were subjected to T-H by bleeding to a mean arterial blood pressure of 40 mmHg for 90 min followed by resuscitation. Glucosamine treatment during resuscitation significantly attenuated the T-H-induced increase in cardiac levels of TNF-alpha and IL-6 mRNA, IkappaB-alpha phosphorylation, NF-kappaB, NF-kappaB DNA binding activity, ICAM-1, and MPO activity. LPS (2 microg/ml) increased the levels of IkappaB-alpha phosphorylation, TNF-alpha, ICAM-1, and NF-kappaB in primary cultured cardiomyocytes, which was significantly attenuated by glucosamine treatment and overexpression of O-GlcNAc transferase; both interventions also significantly increased O-GlcNAc levels. In contrast, the transfection of neonatal rat ventricular myocytes with OGT small-interfering RNA decreased O-GlcNAc transferase and O-GlcNAc levels and enhanced the LPS-induced increase in IkappaB-alpha phosphorylation. Glucosamine treatment of macrophage cell line RAW 264.7 also increased O-GlcNAc levels and attenuated the LPS-induced activation of NF-kappaB. These results demonstrate that the modulation of O-GlcNAc levels alters the response of cardiomyocytes to the activation of the NF-kappaB pathway, which may contribute to the glucosamine-mediated improvement in cardiac function following hemorrhagic shock.


Journal of Biological Chemistry | 2011

O-GlcNAcylation, Novel Post-Translational Modification Linking Myocardial Metabolism and Cardiomyocyte Circadian Clock

David J. Durgan; Betty Pat; Boglárka Laczy; Jerry A. Bradley; Ju-Yun Tsai; Maximiliano H. Grenett; William F. Ratcliffe; Rachel A. Brewer; J. Nagendran; Carolina Villegas-Montoya; Chenhang Zou; Luyun Zou; Russell L. Johnson; Jason R. B. Dyck; Molly S. Bray; Karen L. Gamble; John C. Chatham; Martin E. Young

The cardiomyocyte circadian clock directly regulates multiple myocardial functions in a time-of-day-dependent manner, including gene expression, metabolism, contractility, and ischemic tolerance. These same biological processes are also directly influenced by modification of proteins by monosaccharides of O-linked β-N-acetylglucosamine (O-GlcNAc). Because the circadian clock and protein O-GlcNAcylation have common regulatory roles in the heart, we hypothesized that a relationship exists between the two. We report that total cardiac protein O-GlcNAc levels exhibit a diurnal variation in mouse hearts, peaking during the active/awake phase. Genetic ablation of the circadian clock specifically in cardiomyocytes in vivo abolishes diurnal variations in cardiac O-GlcNAc levels. These time-of-day-dependent variations appear to be mediated by clock-dependent regulation of O-GlcNAc transferase and O-GlcNAcase protein levels, glucose metabolism/uptake, and glutamine synthesis in an NAD-independent manner. We also identify the clock component Bmal1 as an O-GlcNAc-modified protein. Increasing protein O-GlcNAcylation (through pharmacological inhibition of O-GlcNAcase) results in diminished Per2 protein levels, time-of-day-dependent induction of bmal1 gene expression, and phase advances in the suprachiasmatic nucleus clock. Collectively, these data suggest that the cardiomyocyte circadian clock increases protein O-GlcNAcylation in the heart during the active/awake phase through coordinated regulation of the hexosamine biosynthetic pathway and that protein O-GlcNAcylation in turn influences the timing of the circadian clock.


Shock | 2006

Glucosamine administration during resuscitation improves organ function after trauma hemorrhage.

Shaolong Yang; Luyun Zou; Pam Bounelis; Irshad H. Chaudry; John C. Chatham; Richard B. Marchase

ABSTRACT Stress-induced hyperglycemia is necessary for maximal rates of survival after severe hemorrhage; however, the responsible mechanisms are not clear. One consequence of hyperglycemia is an increase in hexosamine biosynthesis, which leads to increases in levels of O-linked attachment of N-acetyl-glucosamine (O-GlcNAc) on nuclear and cytoplasmic proteins. This modification has been shown to lead to improved survival of isolated cells after stress. In view of this, we hypothesized that glucosamine (GlcNH2), which more selectively increases the levels of O-GlcNAc administration after shock, will have salutary effects on organ function after trauma hemorrhage (TH). Fasted male rats that underwent midline laparotomy were bled to a mean arterial blood pressure of 40 mmHg for 90 min and then resuscitated with Ringer lactate (four times the shed blood volume). Administration of 2.5 mL of 150 mmol L−1 GlcNH2 midway during resuscitation improved cardiac output 2-fold compared with controls that received 2.5 mL of 150 mmol L−1 NaCl. GlcNH2 also improved perfusion of various organs systems, including kidney and brain, and attenuated the TH-induced increase in serum levels of IL-6 (902 ± 224 vs. 585 ± 103 pg mL−1) and TNF-&agr; (540 ± 81 vs. 345 ± 110 pg mL−1) (values are mean ± SD). GlcNH2 administration resulted in significant increase in protein-associated O-GlcNAc in the heart and brain after TH. Thus, GlcNH2 administered during resuscitation improves recovery from TH, as assessed by cardiac function, organ perfusion, and levels of circulating inflammatory cytokines. This protection correlates with enhanced levels of nucleocytoplasmic protein O-GlcNAcylation and suggests that increased O-GlcNAc could be the mechanism that links stress-induced hyperglycemia to improved outcomes.


Shock | 2007

The protective effects of PUGNAc on cardiac function after trauma-hemorrhage are mediated via increased protein O-GlcNAc levels.

Luyun Zou; Shaolong Yang; Shunhua Hu; Irshad H. Chaudry; Richard B. Marchase; John C. Chatham

We have previously shown that administration of glucosamine after trauma-hemorrhage (TH) improved cardiac output and organ perfusion, and this was associated with increased levels of O-linked N-acetylglucosamine (O-GlcNAc) on proteins in the heart and brain. An alternative means of increasing O-GlcNAc levels is by inhibition of O-linked N-acetylglucosaminidase, which catalyzes the removal of N-acetylglucosamine from proteins, with O-(2-acetamido-2-deoxy-d-glucopyranosylidene) amino-N-phenylcarbamate (PUGNAc). The goal of this study, therefore, was to determine whether PUGNAc administration after TH also improves recovery of organ perfusion and function. Fasted male rats were bled to and maintained at a mean arterial blood pressure of 40 mmHg for 90 min, followed by fluid resuscitation. Intravenous administration of PUGNAc (200 &mgr;mol/kg body weight) 30 min after the onset of resuscitation significantly improved cardiac output compared with the vehicle controls (12.3 ± 1.3 mL/min per 100 g body weight vs. 25.5 ± 2.0 mL/min per 100 g body weight; P < 0.05), decreased total peripheral resistance (6.6 ± 0.8 mmHg/mL per minute per 100 g body weight vs. 3.7 ± 0.3 mmHg/mL per minute per 100 g body weight; P < 0.05), and increased perfusion of critical organ systems, including the kidney and liver, determined at 2 h after the end of resuscitation. Treatment with PUGNAc also attenuated the TH-induced increase in plasma IL-6 levels (864 ± 112 pg/mL vs. 392 ± 188 pg/mL; P < 0.05) and TNF-&agr; levels (216 ± 21 pg/mL vs. 94 ± 11 pg/mL; P < 0.05) and significantly increased O-GlcNAc levels in the heart, liver, and kidney. Thus, PUGNAc, like glucosamine, improves cardiac function and organ perfusion and reduced the level of circulating IL-6 and TNF-&agr; after TH. The similar effects of glucosamine and PUGNAc support the notion that the protection associated with both interventions is mediated via increased protein O-GlcNAc levels.


Journal of Biological Chemistry | 2012

Modification of STIM1 by O-linked N-Acetylglucosamine (O-GlcNAc) Attenuates Store-operated Calcium Entry in Neonatal Cardiomyocytes

Xiaoyuan Zhu-Mauldin; Susan A. Marsh; Luyun Zou; Richard B. Marchase; John C. Chatham

Background: Increased cellular O-GlcNAc levels decrease store-operated Ca2+ entry (SOCE), however, the mechanism is not understood. STIM1 regulates SOCE, but effect of O-GlcNAc on STIM1 function is not known. Results: Increased cardiomyocyte O-GlcNAcylation attenuated STIM1 puncta formation, SOCE and increased O-GlcNAc modification of STIM1. Conclusion: O-GlcNAc modification of STIM1 plays a key role in regulating SOCE. Significance: Protein O-GlcNAcylation regulates SOCE, a central Ca2+ signaling pathway. Store-operated calcium entry (SOCE) is a major Ca2+ signaling pathway responsible for regulating numerous transcriptional events. In cardiomyocytes SOCE has been shown to play an important role in regulating hypertrophic signaling pathways, including nuclear translocation of NFAT. Acute activation of pathways leading to O-GlcNAc synthesis have been shown to impair SOCE-mediated transcription and in diabetes, where O-GlcNAc levels are chronically elevated, cardiac hypertrophic signaling is also impaired. Therefore the goal of this study was to determine whether changes in cardiomyocyte O-GlcNAc levels impaired the function of STIM1, a widely recognized mediator of SOCE. We demonstrated that acute activation of SOCE in neonatal cardiomyocytes resulted in STIM1 puncta formation, which was inhibited in a dose-dependent manner by increasing O-GlcNAc synthesis with glucosamine or inhibiting O-GlcNAcase with thiamet-G. Glucosamine and thiamet-G also inhibited SOCE and were associated with increased O-GlcNAc modification of STIM1. These results suggest that activation of cardiomyocyte O-GlcNAcylation attenuates SOCE via STIM1 O-GlcNAcylation and that this may represent a new mechanism by which increased O-GlcNAc levels regulate Ca2+-mediated events in cardiomyocytes. Further, since SOCE is a fundamental mechanism underlying Ca2+ signaling in most cells and tissues, it is possible that STIM1 represents a nexus linking protein O-GlcNAcylation with Ca2+-mediated transcription.


Journal of Biological Chemistry | 2012

Glucose deprivation induced increase in protein O-GlcNAcylation in cardiomyocytes is calcium dependent

Luyun Zou; Xiaoyuan Zhu-Mauldin; Richard B. Marchase; Andrew J. Paterson; Jian Liu; Qinglin Yang; John C. Chatham

Background: Levels of cellular protein O-GlcNAc modification increase in response to stress, but mechanism not understood. Results: Glucose deprivation and heat shock-induced increase in O-GlcNAcylation are attenuated by CaMKII inhibition. Conclusion: CaMKII activation plays a key role in regulating the stress-induced increase in O-GlcNAc. Significance: Understanding the regulation of O-GlcNAcylation is critical in determining its role in cellular stress responses. The posttranslational modification of nuclear and cytosolic proteins by O-linked β-N-acetylglucosamine (O-GlcNAc) has been shown to play an important role in cellular response to stress. Although increases in O-GlcNAc levels have typically been thought to be substrate-driven, studies in several transformed cell lines reported that glucose deprivation increased O-GlcNAc levels by a number of different mechanisms. A major goal of this study therefore was to determine whether in primary cells, such as neonatal cardiomyocytes, glucose deprivation increases O-GlcNAc levels and if so by what mechanism. Glucose deprivation significantly increased cardiomyocyte O-GlcNAc levels in a time-dependent manner and was associated with decreased O-GlcNAcase (OGA) but not O-GlcNAc transferase (OGT) protein. This response was unaffected by either the addition of pyruvate as an alternative energy source or by the p38 MAPK inhibitor SB203580. However, the response to glucose deprivation was blocked completely by glucosamine, but not by inhibition of OGA with 2-acetamido-2-deoxy-d-glucopyranosylidene)amino-N-phenylcarbamate. Interestingly, the CaMKII inhibitor KN93 also significantly reduced the response to glucose deprivation. Lowering extracellular Ca2+ with EGTA or blocking store operated Ca2+ entry with SKF96365 also attenuated the glucose deprivation-induced increase in O-GlcNAc. In C2C12 and HEK293 cells both glucose deprivation and heat shock increased O-GlcNAc levels, and CaMKII inhibitor KN93 attenuated the response to both stresses. These results suggest that increased intracellular calcium and subsequent activation of CaMKII play a key role in regulating the stress-induced increase in cellular O-GlcNAc levels.


American Journal of Physiology-heart and Circulatory Physiology | 2014

Stromal interaction molecule 1 is essential for normal cardiac homeostasis through modulation of ER and mitochondrial function

Helen E. Collins; Lan He; Luyun Zou; Jing Qu; Lufang Zhou; Silvio Litovsky; Qinglin Yang; Martin E. Young; Richard B. Marchase; John C. Chatham

The endoplasmic reticulum (ER) Ca(2+) sensor stromal interaction molecule 1 (STIM1) has been implicated as a key mediator of store-dependent and store-independent Ca(2+) entry pathways and maintenance of ER structure. STIM1 is present in embryonic, neonatal, and adult cardiomyocytes and has been strongly implicated in hypertrophic signaling; however, the physiological role of STIM1 in the adult heart remains unknown. We, therefore, developed a novel cardiomyocyte-restricted STIM1 knockout ((cr)STIM1-KO) mouse. In cardiomyocytes isolated from (cr)STIM1-KO mice, STIM1 expression was reduced by ∼92% with no change in the expression of related store-operated Ca(2+) entry proteins, STIM2, and Orai1. Immunoblot analyses revealed that (cr)STIM1-KO hearts exhibited increased ER stress from 12 wk, as indicated by increased levels of the transcription factor C/EBP homologous protein (CHOP), one of the terminal markers of ER stress. Transmission electron microscopy revealed ER dilatation, mitochondrial disorganization, and increased numbers of smaller mitochondria in (cr)STIM1-KO hearts, which was associated with increased mitochondrial fission. Using serial echocardiography and histological analyses, we observed a progressive decline in cardiac function in (cr)STIM1-KO mice, starting at 20 wk of age, which was associated with marked left ventricular dilatation by 36 wk. In addition, we observed the presence of an inflammatory infiltrate and evidence of cardiac fibrosis from 20 wk in (cr)STIM1-KO mice, which progressively worsened by 36 wk. These data demonstrate for the first time that STIM1 plays an essential role in normal cardiac function in the adult heart, which may be important for the regulation of ER and mitochondrial function.


Molecular Medicine | 2011

Aging influences cardiac mitochondrial gene expression and cardiovascular function following hemorrhage injury.

Bixi Jian; Shaolong Yang; Luyun Zou; John C. Chatham; Irshad H. Chaudry; Raghavan Raju

Cardiac dysfunction and mortality associated with trauma and sepsis increase with age. Mitochondria play a critical role in the energy demand of cardiac muscles, and thereby on the function of the heart. Specific molecular pathways responsible for mitochondrial functional alterations after injury in relation to aging are largely unknown. To further investigate this, 6- and 22-month-old rats were subjected to trauma-hemorrhage (T-H) or sham operation and euthanized following resuscitation. Left ventricular tissue was profiled using our custom rodent mitochondrial gene chip (RoMitochip). Our experiments demonstrated a declined left ventricular performance and decreased alteration in mitochondrial gene expression with age following T-H and we have identified c-Myc, a pleotropic transcription factor, to be the most upregulated gene in 6- and 22-month-old rats after T-H. Following T-H, while 142 probe sets were altered significantly (39 up and 103 down) in 6-month-old rats, only 66 were altered (30 up and 36 down) in 22-month-old rats; 36 probe sets (11 up and 25 down) showed the same trend in both groups. The expression of c-Myc and cardiac death promoting gene Bnip3were increased, and Pgc1-α and Ppar-a a decreased following T-H. Eleven †RNA transcripts on mtDNA were upregulated following T-H in the aged animals, compared with the sham group. Our observations suggest a c-myc-regulated mitochondrial dysfunction following T-H injury and marked decrease in age-dependent changes in the transcrip-tional profile of mitochondrial genes following T-H, possibly indicating cellular senescence. To our knowledge, this is the first report on mitochondrial gene expression profile following T-H in relation to aging.


American Journal of Physiology-heart and Circulatory Physiology | 2014

High-fat, low-carbohydrate diet promotes arrhythmic death and increases myocardial ischemia-reperfusion injury in rats

Jian Liu; Peipei Wang; Luyun Zou; Jing Qu; Silvio Litovsky; Patrick K Umeda; Lufang Zhou; John C. Chatham; Susan A. Marsh; Louis J. Dell'Italia; Steven G. Lloyd

High-fat, low-carbohydrate diets (HFLCD) are often eaten by humans for a variety of reasons, but the effects of such diets on the heart are incompletely understood. We evaluated the impact of HFLCD on myocardial ischemia/reperfusion (I/R) using an in vivo model of left anterior descending coronary artery ligation. Sprague-Dawley rats (300 g) were fed HFLCD (60% calories fat, 30% protein, 10% carbohydrate) or control (CONT; 16% fat, 19% protein, 65% carbohydrate) diet for 2 wk and then underwent open chest I/R. At baseline (preischemia), diet did not affect left ventricular (LV) systolic and diastolic function. Oil red O staining revealed presence of lipid in the heart with HFLCD but not in CONT. Following I/R, recovery of LV function was decreased in HFLCD. HFLCD hearts exhibited decreased ATP synthase and increased uncoupling protein-3 gene and protein expression. HFLCD downregulated mitochondrial fusion proteins and upregulated fission proteins and store-operated Ca(2+) channel proteins. HFLCD led to increased death during I/R; 6 of 22 CONT rats and 16 of 26 HFLCD rats died due to ventricular arrhythmias and hemodynamic shock. In surviving rats, HFLCD led to larger infarct size. We concluded that in vivo HFLCD does not affect nonischemic LV function but leads to greater myocardial injury during I/R, with increased risk of death by pump failure and ventricular arrhythmias, which might be associated with altered cardiac energetics, mitochondrial fission/fusion dynamics, and store-operated Ca(2+) channel expression.

Collaboration


Dive into the Luyun Zou's collaboration.

Top Co-Authors

Avatar

John C. Chatham

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Richard B. Marchase

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Irshad H. Chaudry

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Shaolong Yang

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Shunhua Hu

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Brian P. Dranka

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar

Jing Qu

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Lufang Zhou

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Martin E. Young

University of Alabama at Birmingham

View shared research outputs
Researchain Logo
Decentralizing Knowledge