Luz María Chiu
National Autonomous University of Mexico
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Luz María Chiu.
Neuropharmacology | 2007
María Sitges; Luz María Chiu; Araceli Guarneros; Vladimir Nekrassov
Several of the most effective antiepileptic drugs are believed to stop the paroxysmal neuronal activity acting as Na(+) channel blockers. However, no single study comparing in parallel the potency and efficacy of the most commonly used antiepileptic drugs on brain Na(+) channel-mediated responses is available. In the present study the effects of increasing concentrations of carbamazepine, phenytoin, lamotrigine, oxcarbazepine and topiramate, which are among the most frequently used antiepileptic drugs, and of the new putative antiepileptic drug, vinpocetine, on the release of glutamate (Glu) elicited by the Na(+) channel opener, veratridine were investigated in hippocampal isolated nerve endings preloaded with the labeled excitatory amino acid neurotransmitter. The present results show that carbamazepine, phenytoin, lamotrigine and oxcarbazepine, in the range from 150 to 1500 microM, progressively inhibit [(3)H]Glu release induced by veratridine. Also vinpocetine progressively inhibits the veratridine-induced response, but in a much lower range of concentrations (from 1.5 to 15 microM), whereas topiramate only exerts a modest inhibition (20%) of Glu release to veratridine at the highest dose tested (1500 microM). These results indicate that the mechanism of action of several of the most widely used antiepileptic drugs involves reduction in cerebral presynaptic voltage sensitive Na(+) channels permeability. Considering that the high doses of antiepileptic drugs required to control seizures are frequently accompanied by adverse secondary effects, the higher potency of vinpocetine to reduce Na(+) channels permeability might be advantageous.
Neurochemistry International | 2006
María Sitges; Luz María Chiu; Vladimir Nekrassov
The single and combined effects of carbamazepine and vinpocetine on the release of the excitatory amino acid neurotransmitter glutamate, on the rise in internal Na+ (Na(i), as determined with SBFI), and on the rise in internal Ca2+ (Ca(i), as determined with fura-2) induced by an increased permeability of presynaptic Na+ channels, with veratridine, or by an increased permeability of presynaptic Ca2+ channels with high K+, were investigated in isolated hippocampal nerve endings. The present study shows that carbamazepine and vinpocetine, both inhibit dose dependently the release of preloaded [3H]Glu induced by veratridine. However, carbamazepine is two orders of magnitude less potent than vinpocetine. The calculated IC(50)s for carbamazepine and vinpocetine to inhibit veratridine-induced [3H]Glu release are 200 and 2 microM, respectively. Consistently 150 microM carbamazepine and 1.5 microM vinpocetine reduce the veratridine-induced rise in Na(i) in a similar extent. The single effects of carbamazepine and of vinpocetine on the presynaptic Na+ channel mediated responses, namely the rise in Na(i) and the release of Glu induced by veratridine, are additive. Responses that depend on the entrance of external Ca2+ via presynaptic Ca2+ channels, such as the release of [3H]Glu and the rise in Ca(i) induced by high K+, are insensitive to 300 microM carbamazepine and slightly reduced by 5 microM vinpocetine. It is concluded that the additive effects of carbamazepine, which is one of the most common antiepileptic drugs, and vinpocetine that besides its known neuroprotective action and antiepileptic potential is a memory enhancer, may perhaps be advantageous in the treatment of epileptic patients.
Neurochemical Research | 1995
María Sitges; Luz María Chiu
The effect of ω-Aga IVA, a P-type Ca2+ channel blocker, on the release of the inhibitory neurotransmitter GABA and on the elevation of Cai induced by depolarization was investigated in [3H]GABA and fura-2 preloaded mouse brain synaptosomes, respectively. Two strategies (i.e. 20 mM external K+ and veratridine) that depolarize by different mechanisms the preparation were used. High K+ elevates Cai and induces [3H]GABA release in the absence of external Na+ and in the presence of TTX, conditions that abolish veratridine induced responses. The effect of ω-Aga IVA on the Ca2+ and Na+ dependent fractions of the depolarization evoked release of [3H]GABA were separately investigated in synaptosomes depolarized with high K+ in the absence of extermal Na+ and with veratridine in the absence of external Ca2+, respectively. The Ca2+ dependent fraction of the evoked release of [3H]GABA and the elevation of Ca2+ induced by high K+ are markedly inhibited (about 50%) in synaptosomes exposed to ω-Aga IVA (300 nM) for 3 min before depolarization, whereas the Na+ dependent, Ca2+ independent carrier mediated release of [3H]GABA induced by veratridine, which is sensitive to verapamil and amiloride, is not modified by ω-Aga IVA. Our results indicate that an ω-Aga IVA sensitive type of Ca2+ channel is highly involved in GABA exocytosis.
Neurochemistry International | 1998
María Sitges; Fernando Peña; Luz María Chiu; Araceli Guarneros
A possible modulatory role of kinases on voltage sensitive Na+ channels of presynaptic brain nerve endings was investigated by testing the effect of several kinase activators and inhibitors on the elevation of [Nai] induced by veratridine in mouse brain synaptosomes loaded with a selective Na+ indicator dye. Veratridine (20 microM) increases the basal [Nai] level (20 mM) more than twofold. This increase is independent of external Ca2+, but abolished by tetrodotoxin (1 microM). Activation of cAMP dependent protein kinase with forskolin or cAMP analogs, or of protein kinase C with diacylglycerol did not affect the veratridine-induced elevation in [Nai]. Drugs reported to inhibit calmodulin-dependent events, as well as the regulatory domain of protein kinase C, were potent and effective inhibitors of the increase in [Nai] induced by veratridine, as well as other veratridine induced responses, namely elevation of [Cai] (monitored with the Ca2+ indicator dye fura-2) and neurotransmitter (GABA) release. Drugs that inhibit kinases by binding to the catalytic site were ineffective, however, as was the phosphatase inhibitor, okadaic acid. A selective inhibitor of Ca2+ and calmodulin dependent protein kinase II also did not affect the elevation of [Nai] induced by veratridine, but markedly diminished the elevation of [Cai] induced by depolarization either with veratridine or with high K+ (15 and 30 mM). On the basis of these results it is concluded that, the dramatic inhibition exerted by some of the drugs tested on the elevation of [Nai] induced by veratridine is not due to their effects on kinases, but to a possible interaction of these compounds with an intracellular site of the Na+ channel. On the other hand, while Ca2+ and calmodulin dependent protein kinase II is unable to modulate brain presynaptic voltage sensitive Na+ channels, it facilitates the activation of brain presynaptic voltage sensitive Ca2+ channels.
Epilepsy Research | 2011
María Sitges; B.M. Sanchez-Tafolla; Luz María Chiu; Blanca I. Aldana; Araceli Guarneros
4-Aminopyridine (4-AP) is a convulsing agent that in vivo preferentially releases Glu, the most important excitatory amino acid neurotransmitter in the brain. Here the ionic dependence of 4-AP-induced Glu release and the effects of several of the most common antiepileptic drugs (AEDs) and of the new potential AED, vinpocetine on 4-AP-induced Glu release were characterized in hippocampus isolated nerve endings pre-loaded with labelled Glu ([3H]Glu). 4-AP-induced [3H]Glu release was composed by a tetrodotoxin (TTX) sensitive and external Ca2+ dependent fraction and a TTX insensitive fraction that was sensitive to the excitatory amino acid transporter inhibitor, TBOA. The AEDs: carbamazepine, phenytoin, lamotrigine and oxcarbazepine at the highest dose tested only reduced [3H]Glu release to 4-AP between 50-60%, and topiramate was ineffective. Vinpocetine at a much lower concentration than the above AEDs, abolished [3H]Glu release to 4-AP. We conclude that the decrease in [3H]Glu release linked to the direct blockade of presynaptic Na+ channels, may importantly contribute to the anticonvulsant actions of all the drugs tested here (except topiramate); and that the significantly greater vinpocetine effect in magnitude and potency on [3H]Glu release when excitability is exacerbated like during seizures, may involve the increase additionally exerted by vinpocetine in some K+ channels permeability.
Neurochemical Research | 1995
María Sitges; Peter R. Dunkley; Luz María Chiu
A possible role for protein kinases in the regulation of GABA exocytosis in nerve endings was investigated. The effect on the release of the radioactive neurotransmitter ([3H]GABA) from mouse brain synaptosomes of several protein kinase inhibitors was estimated after treatment with 37 mM K+ in the absence of external Na+, a condition under which [3H]GABA release is completely Ca2+ dependent. Among the inhibitors one group inhibit the kinases by binding to the catalytic site (i.e. staurosporine and H7) and others (TFP, sphingosine and W7) act on the regulatory site of protein kinases. The compounds of the second group, which are reported to inhibit calmodulin dependent events and the increase in cytosolic Ca2+ (Cai) induced by high K+ depolarization, were the most efficient inhibitors of [3H]GABA release. The selective inhibitor of CaMPK II, KN-62, also markedly diminished [3H]GABA release as well as the increase in Cai induced by high K+. The kinase inhibitors from the first group that are unable to diminish the increase in Cai induced by high K+ were also less efficient inhibitors of [3H]GABA release even at high concentrations. The present results indicate that at the doses tested all the drugs inhibit to some extent the release of the Ca2+ dependent fraction of [3H]GABA perhaps by inhibiting a CaMPK II mediated phosphorylation step triggered by depolarization and facilitated by the elevation of Cai. In addition, the second group of antagonists and KN-62 inhibit the elevation of Cai to high K+ thus exhibiting a higher efficiency on [3H]GABA release than the first group of antagonists.
Neurochemical Research | 1993
María Sitges; Luz María Chiu; Luxiola González
The Ca2+-dependent, presumably exocytotic fraction of the [3H]GABA released by depolarization is dissected from the depolarization-induced Na+-dependent, carrier-mediated fraction of [3H]GABA release in mouse brain synaptosomes. GABA homoexchange is prevented by the [3H]GABA carrier blocker, DABA. The absence of external Na+ completely abolishes the release of the carrier-mediated, presumably cytoplasmic release of [3H]GABA induced by homoexchange and heteroexchange with GABA and DABA, respectively. The carrier-mediated, Na+-dependent fraction of the depolarization-induced release of [3H]GABA is resistant to tetrodotoxin (TTX) but is sensitive to amiloride and verapamil. The Ca2+-dependent fraction of the [3H]GABA released by high K+ depolarization is also completely abolished by amiloride (from 300 μM) and sensitive to verapamil (30 μM), but in contrast is insensitive to the absence of external Na+ and to DABA. On the basis of these results we conclude that amiloride and verapamil inhibit high K+-induced release of [3H]GABA by antagonizing the entrance of Ca2+ (and possibly Na+ when external Ca2+ is absent) through a population of voltage sensitive presynaptic Ca2+ channels activated by depolarization.
Neurochemical Research | 1995
María Sitges; Luz María Chiu
In an attempt to further characterize the type of Ca2+ channels primarily regulating GABA exocytosis, the effects of increasing concentrations of ωCTx MVIIC,-ω-Aga IVA and other Ca2+ channel blockers (nitrendipine, Cd2+ and Ni2+), commonly used for pharmacologically discerning among the various types of Ca2+ channels, were tested on the dissected Ca2+ dependent fraction of the depolarization evoked release of GABA from mouse brain synaptosomes. Our results show that ω-CTx MVIIC inhibits GABA exocytosis with a calculated IC50 of 3 μM and ω-Aga IVA with a calculated IC50 of 50 nM. The divalent cation Cd2+ only diminishes GABA exocytosis at 70 μM, but does not modify this response at lower concentrations (i.e. 1 and 10 μM). Neither nitrendipine (10 μM) nor Ni2+ (100 μM and 500 μM) modified GABA exocytosis. The failure of nitrendipine at a high concentration to inhibit GABA exocytosis discards L-type Ca2+ channels as the main regulators of this response; likewise that of Ni2+ discards Ca2+ channels of the N-type, and the failure of nM concentrations of ω-CTx MVIIC or 500 μM Ni2+, also discards alpha1A/Q-type Ca2+ channels as the main regulators of the GABA response. On the basis of these results and in particular of the higher potency of ω-Aga IVA than ω-CTx MVIIC, it is concluded that the type of Ca2+ channels that primarily determine the exocytosis of GABA belong to a P-like type of Ca2+ channels.
Neurochemical Research | 2016
María Sitges; Luz María Chiu; Ronald C. Reed
Ion channels are targets of various antiepileptic drugs. In cerebral presynaptic nerve endings Na+ and Ca2+ channels are particularly abundant, as they control neurotransmitter release, including the release of glutamate (Glu), the most concentrated excitatory amino acid neurotransmitter in the brain. Several pre-synaptic channels are implicated in the mechanism of action of the pro-convulsive agent, 4-aminopyridine (4-AP). In the present study the effects of levetiracetam and other established and newer (vinpocetine) anti-epileptic drugs, as well as of the anti-depressant, sertraline on the increase in Ca2+ induced by 4-AP in hippocampal isolated nerve endings were investigated. Also the effects of some of the anti-seizure drugs on the selective increase in Ca2+ induced by high K+, or on the selective increase in Na+ induced by veratridine were tested. Sertraline and vinpocetine effectively inhibited the rise in Ca2+ induced by 4-AP, which was dependent on the out-in Na+ gradient and tetrodotoxin sensitive. Carbamazepine, phenytoin, lamotrigine and oxcarbazepine inhibited the rise in Ca2+ induced by 4-AP too, but at higher concentrations than sertraline and vinpocetine, whereas levetiracetam, valproic acid and topiramate did not. The three latter antiepileptic drugs also failed in modifying other responses mediated by the activation of brain presynaptic Na+ or Ca2+ channels, including Glu release. This indicates that levetiracetam, valproic acid and topiramate mechanisms of action are unrelated with a decrease in presynaptic Na+ or Ca2+ channels permeability. It is concluded that depolarized cerebral isolated nerve endings represent a useful tool to unmask potential antiepileptic drugs targeting presynaptic Na+ and/or Ca2+ channels in the brain; such as vinpocetine or the anti-depressant sertraline, which high effectiveness to control seizures in the animal in vivo has been demonstrated.
Anales - Instituto Mexicano de Psiquiatría | 1990
María Sitges; Luz María Chiu; Juan Ramón de la Fuente