Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vladimir Nekrassov is active.

Publication


Featured researches published by Vladimir Nekrassov.


Neuropharmacology | 2007

Effects of carbamazepine, phenytoin, lamotrigine, oxcarbazepine, topiramate and vinpocetine on Na+ channel-mediated release of [3H]glutamate in hippocampal nerve endings.

María Sitges; Luz María Chiu; Araceli Guarneros; Vladimir Nekrassov

Several of the most effective antiepileptic drugs are believed to stop the paroxysmal neuronal activity acting as Na(+) channel blockers. However, no single study comparing in parallel the potency and efficacy of the most commonly used antiepileptic drugs on brain Na(+) channel-mediated responses is available. In the present study the effects of increasing concentrations of carbamazepine, phenytoin, lamotrigine, oxcarbazepine and topiramate, which are among the most frequently used antiepileptic drugs, and of the new putative antiepileptic drug, vinpocetine, on the release of glutamate (Glu) elicited by the Na(+) channel opener, veratridine were investigated in hippocampal isolated nerve endings preloaded with the labeled excitatory amino acid neurotransmitter. The present results show that carbamazepine, phenytoin, lamotrigine and oxcarbazepine, in the range from 150 to 1500 microM, progressively inhibit [(3)H]Glu release induced by veratridine. Also vinpocetine progressively inhibits the veratridine-induced response, but in a much lower range of concentrations (from 1.5 to 15 microM), whereas topiramate only exerts a modest inhibition (20%) of Glu release to veratridine at the highest dose tested (1500 microM). These results indicate that the mechanism of action of several of the most widely used antiepileptic drugs involves reduction in cerebral presynaptic voltage sensitive Na(+) channels permeability. Considering that the high doses of antiepileptic drugs required to control seizures are frequently accompanied by adverse secondary effects, the higher potency of vinpocetine to reduce Na(+) channels permeability might be advantageous.


Neuropharmacology | 2007

Effects of carbamazepine, phenytoin, valproic acid, oxcarbazepine, lamotrigine, topiramate and vinpocetine on the presynaptic Ca2+ channel-mediated release of [3H]glutamate: Comparison with the Na+ channel-mediated release

María Sitges; Araceli Guarneros; Vladimir Nekrassov

The effect of carbamazepine, phenytoin, valproate, oxcarbazepine, lamotrigine and topiramate, that are among the most widely used antiepileptic drugs (AEDs), and of the new putative AED vinpocetine on the Ca(2+) channel-mediated release of [(3)H]Glu evoked by high K(+) in hippocampal isolated nerve endings was investigated. Results show that carbamazepine, oxcarbazepine and phenytoin reduced [(3)H]Glu release to high K(+) to about 30% and 55% at concentrations of 500 microM and 1500 microM, respectively; lamotrigine and topiramate to about 27% at 1500 microM; while valproate failed to modify it. Vinpocetine was the most potent and effective; 50 microM vinpocetine practically abolished the high K(+) evoked release of [(3)H]Glu. Comparison of the inhibition exerted by the AEDs on [(3)H]Glu release evoked by high K(+) with the inhibition exerted by the AEDs on [(3)H]Glu release evoked by the Na(+) channel opener, veratridine, shows that all the AEDs are in general more effective blockers of the presynaptic Na(+) than of the presynaptic Ca(2+) channel-mediated response. The high doses of AEDs required to control seizures are frequently accompanied by adverse secondary effects. Therefore, the higher potency and efficacy of vinpocetine to reduce the permeability of presynaptic ionic channels controlling the release of the most important excitatory neurotransmitter in the brain must be advantageous in the treatment of epilepsy.


Neurochemistry International | 2005

Vinpocetine blockade of sodium channels inhibits the rise in sodium and calcium induced by 4-aminopyridine in synaptosomes

María Sitges; Emilio Galván; Vladimir Nekrassov

The objective of this study was to get a more understandable picture of the mechanism underlying the anticonvulsant action of vinpocetine. The question of how the cerebral excitability is affected was investigated by determining the effect of vinpocetine on the changes on the internal concentrations of Na(+) (Na(i)) and Ca(2+) (Ca(i)) induced by different concentrations of the convulsing agent 4-aminopyridine (4-AP) in striatal isolated nerve endings. The cytosolic concentrations of Na(i) and Ca(i) were detected fluorimetrically with sodium-binding benzofuran isophthalate (SBFI) and fura-2, respectively. Vinpocetine, like the Na(+) channel blocker, tetrodotoxin, abolished the increase in Na(i) induced by 0.1 mM 4-AP and only inhibited in 30% the rise in Na(i) induced by 1mM 4-AP. In contrast with the different sensitivity of the rise in Na(i) induced by 0.1 and 1mM 4-AP to vinpocetine and tetrodotoxin, the rise in Ca(i) induced by the two concentrations of 4-AP was markedly inhibited by vinpocetine (and tetrodotoxin), indicating that only the voltage-sensitive sodium channels (VSSC)-mediated fraction of the rise in Na(i) induced by 4-AP is linked with the activation of pre-synaptic Ca(2+) channels. The elevation of Ca(2+) induced by high K(+) (30 mM) does not require a Na(+) gradient and is vinpocetine and tetrodotoxin insensitive. In contrast, the elevation of Ca(i) induced by 4-AP, requires a physiological (out/in) Na(+) gradient and is vinpocetine and tetrodotoxin-sensitive. It is concluded that by blocking the tetrodotoxin-sensitive fraction of the rise in Na(i) induced by 4-AP, vinpocetine inhibits the concomitant rise in Ca(i) induced by 4-AP. The inhibitory effect of vinpocetine on pre-synaptic voltage-sensitive sodium channels may underlie the in vivo anticonvulsant action of vinpocetine.


Neurochemical Research | 1999

Vinpocetine selectively inhibits neurotransmitter release triggered by sodium channel activation.

María Sitges; Vladimir Nekrassov

The effects of vinpocetine on internal Na+ (Nai), cAMP accumulation, internal Ca2+ (Cai) and excitatory amino acid neurotransmitters release, under resting and under depolarized conditions, was investigated in rat striatum synaptosomes. Veratridine (20 μM) or high K+ (30 mM) were used as depolarizing agents. Results show that vinpocetine in the low μM range inhibits the elevation of Nai, the elevation of Cai and the release of glutamate and aspartate induced by veratridine depolarization. In contrast, vinpocetine fails to inhibit the rise of Cai and the neurotransmitter release induced by high K+, which are both TTX insensitive responses. Results also show that the inhibition exerted by vinpocetine on all the above veratridine-induced responses is not reflected in PDE activity. Our interpretation of these results is that vinpocetine inhibits neurotransmitter release triggered by veratridine activation of voltage sensitive Na+ channels, but not that triggered by a direct activation of VSCC. Thus, the main mechanism involved in the neuroprotective action of vinpocetine in the CNS is unlikely to be due to a direct inhibition of Ca2+ channels or PDE enzymes, but rather the inhibition of presynaptic Na+ channel-activation unchained responses.


Brain Research | 2000

Simultaneous action of MK-801 (dizclopine) on dopamine, glutamate, aspartate and GABA release from striatum isolated nerve endings.

María Sitges; Vladimir Nekrassov; Araceli Guarneros

The simultaneous effect of MK-801 on the baseline- and depolarization (20 microM veratridine or 30 mM high K+)-evoked release of endogenous dopamine, glutamate (Glu), aspartate (Asp), and GABA is investigated in the same preparation of rat striatum isolated nerve endings. MK-801, in the microM range, selectively increases the baseline and high K+ depolarization-evoked release of dopamine, without causing any effect on the baseline or on the high K+-evoked release of Glu, Asp and GABA. In addition to this selective action on dopamine release, MK-801 inhibits the veratridine depolarization-evoked release of all the neurotransmitters tested, including dopamine. In SBFI and fura-2 preloaded striatal synaptosomes, MK-801 inhibits the elevation of internal Na+ (Na(i)) and the elevation of internal Ca2+ (Ca(i)) induced by veratridine depolarization. The elevation of Ca(i) induced by high K+ depolarization is unchanged by MK-801. This study reveals two separate MK-801 actions. (1) The voltage-independent action, which increases dopamine release selectively, and might contribute to the effects of MK-801 on motor coordination. (2) The voltage-dependent action, which inhibits all the veratridine-evoked responses including the evoked release of the excitatory amino acids (which are particularly concentrated in striatum nerve endings), and might contribute to the anticonvulsant and neuroprotective effects of MK-801.


Neurochemistry International | 2006

Single and combined effects of carbamazepine and vinpocetine on depolarization-induced changes in Na+, Ca2+ and glutamate release in hippocampal isolated nerve endings

María Sitges; Luz María Chiu; Vladimir Nekrassov

The single and combined effects of carbamazepine and vinpocetine on the release of the excitatory amino acid neurotransmitter glutamate, on the rise in internal Na+ (Na(i), as determined with SBFI), and on the rise in internal Ca2+ (Ca(i), as determined with fura-2) induced by an increased permeability of presynaptic Na+ channels, with veratridine, or by an increased permeability of presynaptic Ca2+ channels with high K+, were investigated in isolated hippocampal nerve endings. The present study shows that carbamazepine and vinpocetine, both inhibit dose dependently the release of preloaded [3H]Glu induced by veratridine. However, carbamazepine is two orders of magnitude less potent than vinpocetine. The calculated IC(50)s for carbamazepine and vinpocetine to inhibit veratridine-induced [3H]Glu release are 200 and 2 microM, respectively. Consistently 150 microM carbamazepine and 1.5 microM vinpocetine reduce the veratridine-induced rise in Na(i) in a similar extent. The single effects of carbamazepine and of vinpocetine on the presynaptic Na+ channel mediated responses, namely the rise in Na(i) and the release of Glu induced by veratridine, are additive. Responses that depend on the entrance of external Ca2+ via presynaptic Ca2+ channels, such as the release of [3H]Glu and the rise in Ca(i) induced by high K+, are insensitive to 300 microM carbamazepine and slightly reduced by 5 microM vinpocetine. It is concluded that the additive effects of carbamazepine, which is one of the most common antiepileptic drugs, and vinpocetine that besides its known neuroprotective action and antiepileptic potential is a memory enhancer, may perhaps be advantageous in the treatment of epileptic patients.


Brain Research | 2001

Characterization of vinpocetine effects on DA and DOPAC release in striatal isolated nerve endings

Francisco Trejo; Vladimir Nekrassov; María Sitges

The effect of vinpocetine, a nootropic drug with anti-ischemic potential, on the release of DA and its main metabolite, DOPAC, was investigated in striatum isolated nerve endings under resting and depolarized conditions. Vinpocetine does not modify the baseline release of DA or the exocytotic release of DA evoked by high K(+), but inhibits the release of DA evoked by veratridine reversal of the DA transporter. In addition to these results, which confirm the vinpocetine selective blockade of voltage-sensitive presynaptic Na(+) channels (VSSC) previously reported [Neurochem. Res. 24 (1999) 1585], vinpocetine increases DOPAC release either under resting, veratridine or high K(+) depolarized conditions. This latter effect, which does not involve VSSC, was characterized. The parallel determination of the released and retained catecholamine concentrations revealed that vinpocetine increases DOPAC release at the expense of internal DA in a dose-dependent manner (low microM range). In contrast to vinpocetine, the selective MAO-A inhibitor, clorgyline, increases DA and decreases DOPAC formation. The combined action of vinpocetine and clorgyline does not indicate, however, that the activation of MAO is the mechanism responsible for the increase in DOPAC caused by vinpocetine. Reserpine, although more potent and efficient than vinpocetine, qualitatively exerts the same pattern of changes on DA and DOPAC concentrations. It is concluded that, in addition to the inhibition of presynaptic VSSC permeability, which selectively inhibits the transporter-mediated release of all neurotransmitters, vinpocetine increases DOPAC by impairing the vesicular storage of DA. Our results indicate that the cytoplasm extravesicular DA is metabolized by MAO to DOPAC. Most of the DOPAC formed is exported to the extracellular medium.


Brain Research | 2000

Vinpocetine protects from aminoglycoside antibiotic-induced hearing loss in guinea pig in vivo

Vladimir Nekrassov; María Sitges

The principal objective of this study is to explore the hypothesis that a blockade of Na(+) channels can prevent some of the mechanisms involved in ototoxicity. For this purpose, the potential action of the voltage sensitive Na(+) channel antagonist, vinpocetine, on the ototoxicity induced by the representative aminoglycoside antibiotic, amikacin, in guinea pigs was tested for almost half a year. Amikacin (450 mg/kg) administered daily (i.m.) for 5 days increases the thresholds of the auditory brainstem response (ABR) to the two frequencies tested (4 and 8 kHz). These threshold increases are permanent or at least long-lived, as after 40 days they are already established and are maintained until the end of the experiment (160 days after the antibiotic administration). Amikacin decreases the amplitude of ABR waves, particularly P1, and after 160 days increases the latency of ABR waves, particularly at the higher frequency tested (8 kHz). When the above amikacin regimen is followed by a daily (i.p.) vinpocetine (2 mg/kg) administration for 13 days the increase in ABR threshold and latency caused by amikacin alone is prevented. Moreover, the animals treated with amikacin alone show a decreased weight gain and a remarkable increased mortality in comparison with the group of animals post-treated with vinpocetine. We hope that the multiple beneficial effects exerted by the Na(+) channel blocker, vinpocetine, against aminoglycoside antibiotics-induced side effects could help to solve the serious limitations of the use of this type of antibiotic.


Epilepsy Research | 2004

Vinpocetine inhibits the epileptic cortical activity and auditory alterations induced by pentylenetetrazole in the guinea pig in vivo

Vladimir Nekrassov; María Sitges

Here we investigate the effect of the neuroprotective drug, vinpocetine on the epileptic cortical activity, on the alterations of the later waves of brainstem auditory evoked potentials (BAEPs) and on the hearing decline induced by the convulsing agent, pentylenetetrazole (PTZ). Vinpocetine at doses from 2 to 10 mg/kg inhibits the tonic-clonic convulsions induced by PTZ (100 mg/kg). Vinpocetine injected at a dose of 2 mg/kg 4 h before PTZ completely prevents the characteristic electroencephalogram (EEG) changes induced by PTZ for the ictal and post-ictal periods. Vinpocetine also abolished the PTZ-induced changes in the amplitude and latency of the later waves of the BAEPs in response to pure tone burst monoaural stimuli (frequency 8 or 4 kHz intensity 100 dB), and the PTZ-induced increase in the BAEP threshold. These results show the antiepileptic potential of vinpocetine and indicate the capability of vinpocetine to prevent the changes in the BAEP waves associated with the hearing loss observed during generalized epilepsy.


Epilepsy Research | 2003

Effects of pentylenetetrazole and 4-aminopyridine on the auditory brainstem response (ABR) and on the hearing sensitivity in the guinea pig in vivo

Vladimir Nekrassov; María Sitges

For exploring a possible connection between the reduced hearing sensitivity and certain abnormalities in the auditory brainstem responses (ABRs) in generalized epilepsy, the effects of two convulsing agents, namely pentylenetetrazole (PTZ) and of 4-aminopyridine (4-AP), on: (1). the cortical activity (EEG), (2). the hearing threshold and (3). the amplitudes and latencies of the ABR waves evoked by a stimulus of high intensity (100 dB) were investigated in guinea pigs. All animals injected (i.p.) with 100mg/kg PTZ or with 2mg/kg 4-AP developed generalized seizures, followed by characteristic EEG patterns for the post-ictal period, that were accompanied by a marked reduction of the hearing sensitivity (as indicated by the elevated threshold of the ABR), as well as by retro-cochlear changes (as judged by the changes in the later ABR waves in response to 100 dB). For instance, both convulsing agents decreased the amplitude and increased the latency of P4, that is the wave component of the ABRs generated in the lateral superior olivary nucleus and while PTZ increased the latency of P3, the wave component of the ABRs generated in the medial superior olivary nucleus, 4-AP dramatically increased its amplitude. Comparison of recordings taken at specific times for the duration of the post-ictal period (i.e. within about 1h for PTZ and 2h for 4-AP) reveals that the extent of the changes on the EEG matches with the increase in the auditory threshold and with the extent of the changes on the later waves of the ABR elicited by 100 dB. These data indicate that changes in the activity of the lateral and the medial nuclei of the superior olivary complex (SOC) accompany the hearing loss and the post-ictal epileptic cortical activity.

Collaboration


Dive into the Vladimir Nekrassov's collaboration.

Top Co-Authors

Avatar

María Sitges

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

Araceli Guarneros

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

Luz María Chiu

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

Blanca I. Aldana

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

Carlos D. Gómez

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

Emilio Galván

National Autonomous University of Mexico

View shared research outputs
Researchain Logo
Decentralizing Knowledge