Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Luzia Naoko Shinohara Furukawa is active.

Publication


Featured researches published by Luzia Naoko Shinohara Furukawa.


Pediatric Research | 2004

Perinatal Salt Restriction: A New Pathway to Programming Insulin Resistance and Dyslipidemia in Adult Wistar Rats

Armando Ferreira Vidonho; Alexandre Ataide da Silva; Sergio Catanozi; J.C. Rocha; Abram Beutel; Bruno A. Carillo; Luzia Naoko Shinohara Furukawa; Cassia Toledo Bergamaschi; Angelo R Carpinelli; Eder C.R. Quintão; Miriam Sterman Dolnikoff; Joel Claudio Heimann

Several studies support the hypothesis that chronic diseases in adulthood might be triggered by events that occur during fetal development. This study examined the consequences of perinatal salt intake on blood pressure (BP) and carbohydrate and lipid metabolism in adult offspring of dams on high-salt [HSD; 8% (HSD2) or 4% (HSD1)], normal-salt (NSD; 1.3%), or low-salt (LSD; 0.15% NaCl) diet during pregnancy and lactation. At 12 wk of age, female Wistar rats were matched with adult male rats that were fed NSD. Weekly tail-cuff BP measurements were performed before, during, and after pregnancy. After weaning, the offspring received only NSD and were housed in metabolic cages for 24-h urine collection for sodium and potassium and nitrate and nitrite excretion measurements. At 12 wk of age, intra-arterial mean BP was measured, a euglycemic-hyperinsulinemic clamp was performed, and plasma lipids and nitrate and nitrite concentrations were determined. Tail-cuff BP was higher during pregnancy in HSD2 and HSD1 than in NSD and LSD dams. Mean BP (mm Hg) was also higher in the offspring of HSD2 (110 ± 5) and HSD1 (107 ± 5) compared with NSD (100 ± 2) and LSD (92 ± 2). Lower glucose uptake and higher plasma cholesterol and triacylglycerols were observed in male offspring from LSD dams (glucose uptake: HSD2 17 ± 4, HSD1 15 ± 3, NSD 11 ± 3, LSD 4 ± 1 mg · kg−1 · min−1; cholesterol: HSD2 62 ± 6, HSD1 82 ± 11, NSD 68 ± 10, LSD 98 ± 17 mg/dL; triacylglycerols: HSD2 47 ± 15, HSD1 49 ± 12, NSD 56 ± 19, LSD 83 ± 11 mg/dL). In conclusion, maternal salt intake during pregnancy and lactation has long-term influences on arterial pressure, insulin sensitivity, and plasma lipids of the adult offspring.


Journal of Nutrition | 2010

Salt-Induced Cardiac Hypertrophy and Interstitial Fibrosis Are Due to a Blood Pressure–Independent Mechanism in Wistar Rats

Daniele Nunes Ferreira; Isis Akemi Katayama; Ivone B. Oliveira; Kaleizu Teodoro Rosa; Luzia Naoko Shinohara Furukawa; Michella Soares Coelho; Dulce Elena Casarini; Joel Claudio Heimann

High salt intake is a known cardiovascular risk factor and is associated with cardiac alterations. To better understand this effect, male Wistar rats were fed a normal (NSD: 1.3% NaCl), high 4 (HSD4: 4%), or high 8 (HSD8: 8%) salt diet from weaning until 18 wk of age. The HSD8 group was subdivided into HSD8, HSD8+HZ (15 mg . kg(-1) . d(-1) hydralazine in the drinking water), and HSD8+LOS (20 mg . kg(-1) . d(-1) losartan in the drinking water) groups. The cardiomyocyte diameter was greater in the HSD4 and HSD8 groups than in the HSD8+LOS and NSD groups. Interstitial fibrosis was greater in the HSD4 and HSD8 groups than in the HSD8+HZ and NSD groups. Hydralazine prevented high blood pressure (BP) and fibrosis, but not cardiomyocyte hypertrophy. Losartan prevented high BP and cardiomyocyte hypertrophy, but not fibrosis. Angiotensin II type 1 receptor (AT(1)) protein expression in both ventricles was greater in the HSD8 group than in the NSD group. Losartan, but not hydralazine, prevented this effect. Compared with the NSD group, the binding of an AT(1) conformation-specific antibody that recognizes the activated form of the receptor was lower in both ventricles in all other groups. Losartan further lowered the binding of the anti-AT(1) antibody in both ventricles compared with all other experimental groups. Angiotensin II was greater in both ventricles in all groups compared with the NSD group. Myocardial structural alterations in response to HSD are independent of the effect on BP. Salt-induced cardiomyocyte hypertrophy and interstitial fibrosis possibly are due to different mechanisms. Evidence from the present study suggests that salt-induced AT(1) receptor internalization is probably due to angiotensin II binding.


Life Sciences | 2008

Perinatal salt restriction : A new pathway to programming adiposity indices in adult female Wistar rats

Karen Lucasechi Lopes; Luzia Naoko Shinohara Furukawa; Ivone B. Oliveira; Miriam S. Dolnikoff; Joel Claudio Heimann

Low birth weight has been associated with increased obesity in adulthood. It has been shown that dietary salt restriction during intrauterine life induces low birth weight and insulin resistance in adult Wistar rats. The present study had a two-fold objective: to evaluate the effects that low salt intake during pregnancy and lactation has on the amount and distribution of adipose tissue; and to determine whether the phenotypic changes in fat mass in this model are associated with alterations in the activity of the renin-angiotensin system. Maternal salt restriction was found to reduce birth weight in male and female offspring. In adulthood, the female offspring of dams fed the low-salt diet presented higher adiposity indices than those seen in the offspring of dams fed a normal-salt diet. This was attributed to the fact that adipose tissue mass (retroperitoneal but not gonadal, mesenteric or inguinal) was greater in those rats than in the offspring of dams fed a normal diet. The adult offspring of dams fed the low-salt diet, compared to those dams fed a normal-salt diet, presented the following: plasma leptin levels higher in males and lower in females; plasma renin activity higher in males but not in females; and no differences in body weight, mean arterial blood pressure or serum angiotensin-converting enzyme activity. Therefore, low salt intake during pregnancy might lead to the programming of obesity in adult female offspring.


Regulatory Peptides | 2007

Differential sympathetic and angiotensinergic responses in rats submitted to low- or high-salt diet.

Bruno A. Carillo; Abram Beutel; D.A. Mirandola; A.F. Vidonho; Luzia Naoko Shinohara Furukawa; Dulce Elena Casarini; Miriam Sterman Dolnikoff; Joel Claudio Heimann; Cassia Toledo Bergamaschi

The present study was designed to evaluate, in Wistar rats, the effect of high- or low-salt diet on the hemodynamic parameters and on the renal and lumbar sympathetic nerve activity. The renal gene expression of the renin angiotensin system components was also evaluated, aiming to find some correlation between salt intake, sodium homeostasis and blood pressure increase. Male Wistar rats received low (0.06% Na, TD 92141-Harlan Teklad), a normal (0.5% Na, TD 92140), or a high-salt diet (3.12% Na, TD 92142) from weaning to adulthood. Hemodynamic parameters such as cardiac output and total peripheral resistance, and the renal and lumbar sympathetic nerve activity were determined (n=45). Plasma renin activity, plasma and renal content of angiotensin (ANG) I and II, and the renal mRNA expression of angiotensinogen, renin, AT1 and AT2 receptors were also measured (n=24). Compared to normal- and low-salt diet-, high-salt-treated rats were hypertensive and developed an increase (P<0.05) in total peripheral resistance and lumbar sympathetic nerve activity. A decrease in renal renin and angiotensinogen-mRNAs and in plasma ANG II and plasma renin activity was also found in salt overloaded animals. The renal sympathetic nerve activity was higher (P<0.05) in low- compared to high-salt-treated rats, and was associated with an increase (P<0.05) in renal ANG I and II and with a decrease (P<0.05) in AT2 renal mRNA. Plasma ANG I and II and plasma renin activity were higher in low- than in normal-salt rats. Our results show that increased blood pressure is associated with increases in lumbar sympathetic nerve activity and total peripheral resistance in high-salt-treated rats. However, in low-salt-treated rats an increase in the renal sympathetic nerve was correlated with an increase in the renal content of ANG I and II and with a decrease in AT2 renal mRNA. These changes are probably in favor of the antinatriuretic response and the sodium homeostasis in the low-salt group.


Toxicology Letters | 2015

Inhalation of fine particulate matter during pregnancy increased IL-4 cytokine levels in the fetal portion of the placenta.

Juliana Oliveira de Melo; Sonia Soto; Isis Akemi Katayama; Camilla Ferreira Wenceslau; Amanda Gonçalves Pires; Mariana Matera Veras; Luzia Naoko Shinohara Furukawa; Isac de Castro; Paulo Hilário Nascimento Saldiva; Joel Claudio Heimann

This study aimed to verify the development of placental and systemic inflammation in rats exposed to fine particulate matter before or during pregnancy. Wistar rats were exposed to filtered air (control) or to a load of 600 μg/m(3) of fine particles in the air. The gene expression of IL-1β, IL-4, IL-6, IL-10, INF-γ, TNF-α and Toll-like receptor 4 in the placenta was evaluated. The serum and placental concentrations of IL-1β, IL-4, IL-6, IL-10, INF-γ and TNF-α were measured. The total and differential blood leukocyte and blood platelet count was assessed. Compared to control animals, IL-4 content was elevated in the fetal portion of the placenta in rats exposed to air pollution before and during pregnancy. Increased IL-4 suggests that a placental inflammatory reaction may have occurred in response to exposure to fine particulate matter and that this cytokine was responsible, among possibly others factors, for resolution of the inflammatory reaction.


The American Journal of the Medical Sciences | 2006

Effect of Lifelong High- or Low-Salt Intake on Blood Pressure, Left Ventricular Mass and Plasma Insulin in Wistar Rats

Nereida Kilza da Costa Lima; Fabio Bessa Lima; Maristela Mitiko Okamoto; N.S. Hell; Elisabete Alcantara Dos Santos; Luzia Naoko Shinohara Furukawa; Joel Claudio Heimann; Doris Hissako Sumida

Background:Salt restriction is recommended for hypertension treatment to reduce blood pressure, but its effect on some risk factors is still a matter of discussion. The aim of this study was to observe the effect of a long period of salt restriction or overload on blood pressure, left ventricular mass (LVM), kidney mass (KM), glucose tolerance, and plasma insulin. Methods:Male Wistar rats were fed from weaning with a low-salt diet (LSD) or a high-salt diet (HSD) until 72 weeks of age. After 48 weeks, the diets were changed in half of the rats: HSD until 48 weeks and then LSD (LHSD) and LSD until 48 weeks and then HSD (HLSD). Body weight, blood pressure, electrolyte excretion, creatinine clearance, plasma renin activity, LVM, KM, and intravenous glucose tolerance test with insulin determinations were evaluated. Results:Blood pressure, LVM and KM were higher on the HSD than on the LSD. Blood pressure was lower on the LHSD than on the HLSD. There were no differences in LVM and KM on the LHSD compared with the HLSD. The relationship between area under the curve (AUC) of insulin and glucose during the intravenous glucose tolerance test was higher on the LSD. No differences were detected in AUC between the two groups of rats whose diet were inverted with 48 weeks of age. Conclusions:A chronic HSD increases blood pressure, LVM, and KM and a chronic LSD increases plasma insulin in response to a glucose challenge in aging rats. The hypotensive effect of salt restriction is not modified by a previous long period on a HSD.


Nutrition Metabolism and Cardiovascular Diseases | 2013

Salt intake during pregnancy alters offspring’s myocardial structure

E.N. Alves-Rodrigues; Mariana Matera Veras; K.T. Rosa; I. de Castro; Luzia Naoko Shinohara Furukawa; Ivone B. Oliveira; Regiane Machado de Souza; Joel Claudio Heimann

BACKGROUND AND AIM To evaluate the effects of low or high salt intake during pregnancy on left ventricle of adult male offspring. METHODS AND RESULTS Low- (LS, 0.15%), normal- (NS, 1.3%) or high-salt (HS, 8% NaCl) diet was given to Wistar rats during pregnancy. During lactation all dams received NS as well as the offspring after weaning. To evaluate cardiac response to salt overload, 50% of each offspring group was fed a high-salt (hs, 4% NaCl) diet from the 21st to the 36th week of age (LShs, NShs, HShs). The remaining 50% was maintained on NS (LSns, NSns and HSns). Echocardiography was done at 20 and 30 weeks of age. Mean blood pressure (MBP), histology and left ventricular angiotensin II content (AII) were analyzed at 36 weeks of age. Interventricular septum, left ventricular posterior wall and relative wall thickness increased from the 20th to the 30th week of age only in HShs, cardiomyocyte mean volume was higher in HShs compared to NShs, LShs and HSns. AII and left ventricular fibrosis were not different among groups. CONCLUSIONS HS during pregnancy programs adult male offspring to a blood pressure and angiotensin II independent concentric left ventricular hypertrophy, with no fibrosis, in response to a chronic high-salt intake.


Journal of Nutrition | 2014

High-Salt Intake Induces Cardiomyocyte Hypertrophy in Rats in Response to Local Angiotensin II Type 1 Receptor Activation

Isis Akemi Katayama; Rafael Canavel Pereira; Ellen Priscila Brito Dopona; Maria Heloisa Massola Shimizu; Luzia Naoko Shinohara Furukawa; Ivone B. Oliveira; Joel Claudio Heimann

Many studies have shown that risk factors that are independent of blood pressure (BP) can contribute to the development of cardiac hypertrophy (CH). Among these factors, high-salt (HS) intake was prominent. Although some studies have attempted to elucidate the role of salt in the development of this disease, the mechanisms by which salt acts are not yet fully understood. Thus, the aim of this study was to better understand the mechanisms of CH and interstitial fibrosis (IF) caused by HS intake. Male Wistar rats were divided into 5 groups according to diet [normal salt (NS; 1.27% NaCl) or HS (8% NaCl)] and treatment [losartan (LOS) (HS+LOS group), hydralazine (HZ) (HS+HZ group), or N-acetylcysteine (NAC) (HS+NAC group)], which was given in the drinking water. Tail-cuff BP, transverse diameter of the cardiomyocyte, IF, angiotensin II type 1 receptor (AT1) gene and protein expression, serum aldosterone, cardiac angiotensin II, cardiac thiobarbituric acid-reactive substances, and binding of conformation-specific anti-AT1 and anti-angiotensin II type 2 receptor (AT2) antibodies in the 2 ventricles were measured. Based on the left ventricle transverse diameter data, the primary finding was the occurrence of significant BP-independent CH in the HS+HZ group (96% of the HS group) and a partial or total prevention of such hypertrophy via treatment with NAC or LOS (81% and 67% of the HS group, respectively). The significant total or partial prevention of IF using all 3 treatments (HS+HZ, 27%; HS+LOS, 27%; and HS+NAC, 58% of the HS group, respectively), and an increase in the AT1 gene and protein expression and activity in groups that developed CH, confirmed that CH occurred via the AT1 in this experimental model. Thus, this study unveiled some relevant previously unknown mechanisms of CH induced by chronic HS intake in Wistar rats. The link of oxidative stress with CH in our experimental model is very interesting and stimulates further evaluation for its full comprehension.


Physiology & Behavior | 2016

Glucose metabolism and hepatic Igf1 DNA methylation are altered in the offspring of dams fed a low-salt diet during pregnancy.

Flávia Ramos de Siqueira; Luzia Naoko Shinohara Furukawa; Ivone B. Oliveira; Joel Claudio Heimann

A low-salt (LS) diet during pregnancy has been linked to insulin resistance in adult offspring, at least in the experimental setting. However, it remains unclear if this effect is due to salt restriction during early or late pregnancy. To better understand this phenomenon, 12-week-old female Wistar rats were fed a LS or normal-salt (NS) diet during gestation or a LS diet during either the first (LS10) or second (LS20) half of gestation. Glucose tolerance test, HOMA-IR, gene expression analysis and DNA methylation measurements were conducted for the Insr, Igf1, Igf1r, Ins1 and Ins2 genes in the livers of neonates and in the liver, white adipose tissue and muscle of 20-week-old male offspring. Birth weight was lower in the LS20 and LS animals compared with the NS and LS10 rats. In the liver, the Igf1 levels in the LS10, LS20 and LS neonates were lower than those in the NS neonates. Methylation of the Insr, Igf1r, Ins1 and Ins2 genes was influenced in a variable manner by low salt intake during pregnancy. Increased liver Igf1 methylation was observed in the LS and LS20 neonates compared with their NS and LS10 counterparts. Glucose intolerance was observed in adult offspring as an effect of low salt intake over the duration of pregnancy. Compared to the NS animals, the HOMA-IR was higher in the 12-week-old LS and 20-week-old LS-10 rats. Based on these results, it appears that the reason a LS diet during pregnancy induces a low birth weight is its negative correlation with Igf1 DNA methylation in neonates.


Life Sciences | 2012

Maternal high-sodium intake alters the responsiveness of the renin-angiotensin system in adult offspring

Debora Rothstein Ramos; Nauilo L. Costa; Karen L.L. Jang; Ivone B. Oliveira; Alexandre A. da Silva; Joel Claudio Heimann; Luzia Naoko Shinohara Furukawa

AIMS The goal of the current study was to evaluate the impact of maternal sodium intake during gestation on the systemic and renal renin-angiotensin-aldosterone-system (RAAS) of the adult offspring. MAIN METHODS Female Wistar rats were fed high- (HSD-8.0% NaCl) or normal-sodium diets (NSD-1.3% NaCl) from 8 weeks of age until the delivery of their first litter. After birth, the offspring received NSD. Tail-cuff blood pressure (TcBP) was measured in the offspring between 6 and 12 weeks of age. At 12 weeks of age, the offspring were subjected to either one week of HSD or low sodium diet (LSD-0.16% NaCl) feeding to evaluate RAAS responsiveness or to acute saline overload to examine sodium excretory function. Plasma (PRA) and renal renin content (RRC), serum aldosterone (ALDO) levels, and renal cortical and medullary renin mRNA expression levels were evaluated at the end of the study. KEY FINDINGS TcBP was higher among dams fed HSD, but no TcBP differences were observed among the offspring. Male offspring, however, exhibited increased TcBP after one week of HSD feeding, and this effect was independent of maternal diet. Increased RAAS responsiveness to the HSD and LSD was also observed in male offspring. The baseline levels of PRA, ALDO, and cortical and medullary renin gene expression were lower but the RRC levels were higher among HSD-fed male offspring (HSDoff). Conversely, female HSDoff showed reduced sodium excretion 4 h after saline overload compared with female NSDoff. SIGNIFICANCE High maternal sodium intake is associated with gender-specific changes in RAAS responsiveness among adult offspring.

Collaboration


Dive into the Luzia Naoko Shinohara Furukawa's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dulce Elena Casarini

Federal University of São Paulo

View shared research outputs
Top Co-Authors

Avatar

Miriam Sterman Dolnikoff

Federal University of São Paulo

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge