Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lydia M. Castelli is active.

Publication


Featured researches published by Lydia M. Castelli.


Journal of Cell Biology | 2007

Stress-dependent relocalization of translationally primed mRNPs to cytoplasmic granules that are kinetically and spatially distinct from P-bodies

Nathaniel P. Hoyle; Lydia M. Castelli; Susan G. Campbell; Leah E. A. Holmes; Mark P. Ashe

Cytoplasmic RNA granules serve key functions in the control of messenger RNA (mRNA) fate in eukaryotic cells. For instance, in yeast, severe stress induces mRNA relocalization to sites of degradation or storage called processing bodies (P-bodies). In this study, we show that the translation repression associated with glucose starvation causes the key translational mediators of mRNA recognition, eIF4E, eIF4G, and Pab1p, to resediment away from ribosomal fractions. These mediators then accumulate in P-bodies and in previously unrecognized cytoplasmic bodies, which we define as EGP-bodies. Our kinetic studies highlight the fundamental difference between EGP- and P-bodies and reflect the complex dynamics surrounding reconfiguration of the mRNA pool under stress conditions. An absence of key mRNA decay factors from EGP-bodies points toward an mRNA storage function for these bodies. Overall, this study highlights new potential control points in both the regulation of mRNA fate and the global control of translation initiation.


Molecular Biology of the Cell | 2011

Glucose depletion inhibits translation initiation via eIF4A loss and subsequent 48S preinitiation complex accumulation, while the pentose phosphate pathway is coordinately up-regulated.

Lydia M. Castelli; Jennifer Lui; Susan G. Campbell; William Rowe; Leo Zeef; Leah E. A. Holmes; Nathaniel P. Hoyle; Jonathon Bone; Julian N. Selley; Paul F. G. Sims; Mark P. Ashe

The mechanism and consequences of the translational inhibition caused by glucose depletion in yeast are characterized. eIF4A is lost from the preinitiation complex, and the pentose phosphate pathway is translationally up-regulated, allowing an efficient transition to the new conditions.


Genome Biology | 2015

Global mRNA selection mechanisms for translation initiation

Joseph L. Costello; Lydia M. Castelli; William Rowe; Christopher J. Kershaw; David Talavera; Sarah S. Mohammad-Qureshi; Paul F. G. Sims; Chris M. Grant; Graham D. Pavitt; Simon J. Hubbard; Mark P. Ashe

BackgroundThe selection and regulation of individual mRNAs for translation initiation from a competing pool of mRNA are poorly understood processes. The closed loop complex, comprising eIF4E, eIF4G and PABP, and its regulation by 4E-BPs are perceived to be key players. Using RIP-seq, we aimed to evaluate the role in gene regulation of the closed loop complex and 4E-BP regulation across the entire yeast transcriptome.ResultsWe find that there are distinct populations of mRNAs with coherent properties: one mRNA pool contains many ribosomal protein mRNAs and is enriched specifically with all of the closed loop translation initiation components. This class likely represents mRNAs that rely heavily on the closed loop complex for protein synthesis. Other heavily translated mRNAs are apparently under-represented with most closed loop components except Pab1p. Combined with data showing a close correlation between Pab1p interaction and levels of translation, these data suggest that Pab1p is important for the translation of these mRNAs in a closed loop independent manner. We also identify a translational regulatory mechanism for the 4E-BPs; these appear to self-regulate by inhibiting translation initiation of their own mRNAs.ConclusionsOverall, we show that mRNA selection for translation initiation is not as uniformly regimented as previously anticipated. Components of the closed loop complex are highly relevant for many mRNAs, but some heavily translated mRNAs interact poorly with this machinery. Therefore, alternative, possibly Pab1p-dependent mechanisms likely exist to load ribosomes effectively onto mRNAs. Finally, these studies identify and characterize a complex self-regulatory circuit for the yeast 4E-BPs.


Nucleic Acids Research | 2010

Identifying eIF4E-binding protein translationally- controlled transcripts reveals links to mRNAs bound by specific PUF proteins

Andrew G. Cridge; Lydia M. Castelli; Julia B. Smirnova; Julian N. Selley; William Rowe; Simon J. Hubbard; John E. G. McCarthy; Mark P. Ashe; Chris M. Grant; Graham D. Pavitt

eIF4E-binding proteins (4E-BPs) regulate translation of mRNAs in eukaryotes. However the extent to which specific mRNA targets are regulated by 4E-BPs remains unknown. We performed translational profiling by microarray analysis of polysome and monosome associated mRNAs in wild-type and mutant cells to identify mRNAs in yeast regulated by the 4E-BPs Caf20p and Eap1p; the first-global comparison of 4E-BP target mRNAs. We find that yeast 4E-BPs modulate the translation of >1000 genes. Most target mRNAs differ between the 4E-BPs revealing mRNA specificity for translational control by each 4E-BP. This is supported by observations that eap1Δ and caf20Δ cells have different nitrogen source utilization defects, implying different mRNA targets. To account for the mRNA specificity shown by each 4E-BP, we found correlations between our data sets and previously determined targets of yeast mRNA-binding proteins. We used affinity chromatography experiments to uncover specific RNA-stabilized complexes formed between Caf20p and Puf4p/Puf5p and between Eap1p and Puf1p/Puf2p. Thus the combined action of each 4E-BP with specific 3′-UTR-binding proteins mediates mRNA-specific translational control in yeast, showing that this form of translational control is more widely employed than previously thought.


Cell Reports | 2014

Granules Harboring Translationally Active mRNAs Provide a Platform for P-Body Formation following Stress

Jennifer Lui; Lydia M. Castelli; Mariavittoria Pizzinga; Clare E. Simpson; Nathaniel P. Hoyle; Kathryn L. Bailey; Susan G. Campbell; Mark P. Ashe

Summary The localization of mRNA to defined cytoplasmic sites in eukaryotic cells not only allows localized protein production but also determines the fate of mRNAs. For instance, translationally repressed mRNAs localize to P-bodies and stress granules where their decay and storage, respectively, are directed. Here, we find that several mRNAs are localized to granules in unstressed, actively growing cells. These granules play a key role in the stress-dependent formation of P-bodies. Specific glycolytic mRNAs are colocalized in multiple granules per cell, which aggregate during P-body formation. Such aggregation is still observed under conditions or in mutants where P-bodies do not form. In unstressed cells, the mRNA granules appear associated with active translation; this might enable a coregulation of protein expression from the same pathways or complexes. Parallels can be drawn between this coregulation and the advantage of operons in prokaryotic systems.


PLOS Genetics | 2015

The Yeast La Related Protein Slf1p Is a Key Activator of Translation during the Oxidative Stress Response

Christopher J. Kershaw; Joseph L. Costello; Lydia M. Castelli; David Talavera; William Rowe; Paul F. G. Sims; Mark P. Ashe; Simon J. Hubbard; Graham D. Pavitt; Chris M. Grant

The mechanisms by which RNA-binding proteins control the translation of subsets of mRNAs are not yet clear. Slf1p and Sro9p are atypical-La motif containing proteins which are members of a superfamily of RNA-binding proteins conserved in eukaryotes. RIP-Seq analysis of these two yeast proteins identified overlapping and distinct sets of mRNA targets, including highly translated mRNAs such as those encoding ribosomal proteins. In paralell, transcriptome analysis of slf1Δ and sro9Δ mutant strains indicated altered gene expression in similar functional classes of mRNAs following loss of each factor. The loss of SLF1 had a greater impact on the transcriptome, and in particular, revealed changes in genes involved in the oxidative stress response. slf1Δ cells are more sensitive to oxidants and RIP-Seq analysis of oxidatively stressed cells enriched Slf1p targets encoding antioxidants and other proteins required for oxidant tolerance. To quantify these effects at the protein level, we used label-free mass spectrometry to compare the proteomes of wild-type and slf1Δ strains following oxidative stress. This analysis identified several proteins which are normally induced in response to hydrogen peroxide, but where this increase is attenuated in the slf1Δ mutant. Importantly, a significant number of the mRNAs encoding these targets were also identified as Slf1p-mRNA targets. We show that Slf1p remains associated with the few translating ribosomes following hydrogen peroxide stress and that Slf1p co-immunoprecipitates ribosomes and members of the eIF4E/eIF4G/Pab1p ‘closed loop’ complex suggesting that Slf1p interacts with actively translated mRNAs following stress. Finally, mutational analysis of SLF1 revealed a novel ribosome interacting domain in Slf1p, independent of its RNA binding La-motif. Together, our results indicate that Slf1p mediates a translational response to oxidative stress via mRNA-specific translational control.


Nucleic Acids Research | 2014

Puf3p induces translational repression of genes linked to oxidative stress

William Rowe; Christopher J. Kershaw; Lydia M. Castelli; Joseph L. Costello; Mark P. Ashe; Chris M. Grant; Paul F. G. Sims; Graham D. Pavitt; Simon J. Hubbard

In response to stress, the translation of many mRNAs in yeast can change in a fashion discordant with the general repression of translation. Here, we use machine learning to mine the properties of these mRNAs to determine specific translation control signals. We find a strong association between transcripts acutely translationally repressed under oxidative stress and those associated with the RNA-binding protein Puf3p, a known regulator of cellular mRNAs encoding proteins targeted to mitochondria. Under oxidative stress, a PUF3 deleted strain exhibits more robust growth than wild-type cells and the shift in translation from polysomes to monosomes is attenuated, suggesting puf3Δ cells perceive less stress. In agreement, the ratio of reduced:oxidized glutathione, a major antioxidant and indicator of cellular redox state, is increased in unstressed puf3Δ cells but remains lower under stress. In untreated conditions, Puf3p migrates with polysomes rather than ribosome-free fractions, but this is lost under stress. Finally, reverse transcriptase-polymerase chain reaction (RT-PCR) of Puf3p targets following affinity purification shows Puf3p-mRNA associations are maintained or increased under oxidative stress. Collectively, these results point to Puf3p acting as a translational repressor in a manner exceeding the global translational response, possibly by temporarily limiting synthesis of new mitochondrial proteins as cells adapt to the stress.


Nature Communications | 2017

SRSF1-dependent nuclear export inhibition of C9ORF72 repeat transcripts prevents neurodegeneration and associated motor deficits

Guillaume M. Hautbergue; Lydia M. Castelli; Laura Ferraiuolo; Alvaro Sanchez-Martinez; Johnathan Cooper-Knock; Adrian Higginbottom; Ya-Hui Lin; Claudia S. Bauer; Jennifer E. Dodd; Monika A. Myszczynska; Sarah M. Alam; Pierre Garneret; Jayanth S. Chandran; Evangelia Karyka; Matthew J. Stopford; Emma F. Smith; Janine Kirby; Kathrin Meyer; Brian K. Kaspar; Adrian M. Isaacs; Sherif F. El-Khamisy; Kurt J. De Vos; Ke Ning; Mimoun Azzouz; Alexander J. Whitworth; Pamela J. Shaw

Hexanucleotide repeat expansions in the C9ORF72 gene are the commonest known genetic cause of amyotrophic lateral sclerosis and frontotemporal dementia. Expression of repeat transcripts and dipeptide repeat proteins trigger multiple mechanisms of neurotoxicity. How repeat transcripts get exported from the nucleus is unknown. Here, we show that depletion of the nuclear export adaptor SRSF1 prevents neurodegeneration and locomotor deficits in a Drosophila model of C9ORF72-related disease. This intervention suppresses cell death of patient-derived motor neuron and astrocytic-mediated neurotoxicity in co-culture assays. We further demonstrate that either depleting SRSF1 or preventing its interaction with NXF1 specifically inhibits the nuclear export of pathological C9ORF72 transcripts, the production of dipeptide-repeat proteins and alleviates neurotoxicity in Drosophila, patient-derived neurons and neuronal cell models. Taken together, we show that repeat RNA-sequestration of SRSF1 triggers the NXF1-dependent nuclear export of C9ORF72 transcripts retaining expanded hexanucleotide repeats and reveal a novel promising therapeutic target for neuroprotection.


Scientific Reports | 2015

Integrated multi-omics analyses reveal the pleiotropic nature of the control of gene expression by Puf3p.

Christopher J. Kershaw; Joseph L. Costello; David Talavera; William Rowe; Lydia M. Castelli; Paul F. G. Sims; Chris M. Grant; Mark P. Ashe; Simon J. Hubbard; Graham D. Pavitt

The PUF family of RNA-binding proteins regulate gene expression post-transcriptionally. Saccharomyces cerevisiae Puf3p is characterised as binding nuclear-encoded mRNAs specifying mitochondrial proteins. Extensive studies of its regulation of COX17 demonstrate its role in mRNA decay. Using integrated genome-wide approaches we define an expanded set of Puf3p target mRNAs and quantitatively assessed the global impact of loss of PUF3 on gene expression using mRNA and polysome profiling and quantitative proteomics. In agreement with prior studies, our sequencing of affinity-purified Puf3-TAP associated mRNAs (RIP-seq) identified mRNAs encoding mitochondrially-targeted proteins. Additionally, we also found 720  new mRNA targets that predominantly encode proteins that enter the nucleus. Comparing transcript levels in wild-type and puf3∆ cells revealed that only a small fraction of mRNA levels alter, suggesting Puf3p determines mRNA stability for only a limited subset of its target mRNAs. Finally, proteomic and translatomic studies suggest that loss of Puf3p has widespread, but modest, impact on mRNA translation. Taken together our integrated multi-omics data point to multiple classes of Puf3p targets, which display coherent post-transcriptional regulatory properties and suggest Puf3p plays a broad, but nuanced, role in the fine-tuning of gene expression.


Journal of Cell Science | 2012

PKA isoforms coordinate mRNA fate during nutrient starvation

Vanesa Tudisca; Clare E. Simpson; Lydia M. Castelli; Jennifer Lui; Nathaniel P. Hoyle; Silvia Moreno; Mark P. Ashe; Paula Portela

Summary A variety of stress conditions induce mRNA and protein aggregation into mRNA silencing foci, but the signalling pathways mediating these responses are still elusive. Previously we demonstrated that PKA catalytic isoforms Tpk2 and Tpk3 localise with processing and stress bodies in Saccharomyces cerevisiae. Here, we show that Tpk2 and Tpk3 are associated with translation initiation factors Pab1 and Rps3 in exponentially growing cells. Glucose starvation promotes the loss of interaction between Tpk and initiation factors followed by their accumulation into processing bodies. Analysis of mutants of the individual PKA isoform genes has revealed that the TPK3 or TPK2 deletion affects the capacity of the cells to form granules and arrest translation properly in response to glucose starvation or stationary phase. Moreover, we demonstrate that PKA controls Rpg1 and eIF4G1 protein abundance, possibly controlling cap-dependent translation. Taken together, our data suggest that the PKA pathway coordinates multiple stages in the fate of mRNAs in association with nutritional environment and growth status of the cell.

Collaboration


Dive into the Lydia M. Castelli's collaboration.

Top Co-Authors

Avatar

Mark P. Ashe

University of Manchester

View shared research outputs
Top Co-Authors

Avatar

William Rowe

University of Manchester

View shared research outputs
Top Co-Authors

Avatar

Chris M. Grant

University of Manchester

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David Talavera

University of Manchester

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge