Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lydia Teboul is active.

Publication


Featured researches published by Lydia Teboul.


Nature | 2009

NAADP mobilizes calcium from acidic organelles through two-pore channels

Peter J. Calcraft; Margarida Ruas; Zui Pan; Xiaotong Cheng; Abdelilah Arredouani; Xuemei Hao; Jisen Tang; Katja Rietdorf; Lydia Teboul; Kai Ting Chuang; Peihui Lin; Rui Xiao; Chunbo Wang; Yingmin Zhu; Yakang Lin; Christopher N. Wyatt; John Parrington; Jianjie Ma; A. Mark Evans; Antony Galione; Michael X. Zhu

Ca2+ mobilization from intracellular stores represents an important cell signalling process that is regulated, in mammalian cells, by inositol-1,4,5-trisphosphate (InsP3), cyclic ADP ribose and nicotinic acid adenine dinucleotide phosphate (NAADP). InsP3 and cyclic ADP ribose cause the release of Ca2+ from sarcoplasmic/endoplasmic reticulum stores by the activation of InsP3 and ryanodine receptors (InsP3Rs and RyRs). In contrast, the nature of the intracellular stores targeted by NAADP and the molecular identity of the NAADP receptors remain controversial, although evidence indicates that NAADP mobilizes Ca2+ from lysosome-related acidic compartments. Here we show that two-pore channels (TPCs) comprise a family of NAADP receptors, with human TPC1 (also known as TPCN1) and chicken TPC3 (TPCN3) being expressed on endosomal membranes, and human TPC2 (TPCN2) on lysosomal membranes when expressed in HEK293 cells. Membranes enriched with TPC2 show high affinity NAADP binding, and TPC2 underpins NAADP-induced Ca2+ release from lysosome-related stores that is subsequently amplified by Ca2+-induced Ca2+ release by InsP3Rs. Responses to NAADP were abolished by disrupting the lysosomal proton gradient and by ablating TPC2 expression, but were only attenuated by depleting endoplasmic reticulum Ca2+ stores or by blocking InsP3Rs. Thus, TPCs form NAADP receptors that release Ca2+ from acidic organelles, which can trigger further Ca2+ signals via sarcoplasmic/endoplasmic reticulum. TPCs therefore provide new insights into the regulation and organization of Ca2+ signals in animal cells, and will advance our understanding of the physiological role of NAADP.


Nature Genetics | 2010

Overexpression of Fto leads to increased food intake and results in obesity

Chris Church; Lee Moir; Fiona McMurray; Christophe Girard; Gareth Banks; Lydia Teboul; Sara Wells; Jens C. Brüning; Patrick M. Nolan; Frances M. Ashcroft; Roger D. Cox

Genome-wide association studies have identified SNPs within FTO, the human fat mass and obesity–associated gene, that are strongly associated with obesity. Individuals homozygous for the at-risk rs9939609 A allele weigh, on average, ∼3 kg more than individuals with the low-risk T allele. Mice that lack FTO function and/or Fto expression display increased energy expenditure and a lean phenotype. We show here that ubiquitous overexpression of Fto leads to a dose-dependent increase in body and fat mass, irrespective of whether mice are fed a standard or a high-fat diet. Our results suggest that increased body mass results primarily from increased food intake. Mice with increased Fto expression on a high-fat diet develop glucose intolerance. This study provides the first direct evidence that increased Fto expression causes obesity in mice.


Nature | 2016

High-throughput discovery of novel developmental phenotypes.

Mary E. Dickinson; Ann M. Flenniken; Xiao Ji; Lydia Teboul; Michael D. Wong; Jacqueline K. White; Terrence F. Meehan; Wolfgang J. Weninger; Henrik Westerberg; Hibret Adissu; Candice N. Baker; Lynette Bower; James Brown; L. Brianna Caddle; Francesco Chiani; Dave Clary; James Cleak; Mark J. Daly; James M. Denegre; Brendan Doe; Mary E. Dolan; Sarah M. Edie; Helmut Fuchs; Valérie Gailus-Durner; Antonella Galli; Alessia Gambadoro; Juan Gallegos; Shiying Guo; Neil R. Horner; Chih-Wei Hsu

Approximately one-third of all mammalian genes are essential for life. Phenotypes resulting from knockouts of these genes in mice have provided tremendous insight into gene function and congenital disorders. As part of the International Mouse Phenotyping Consortium effort to generate and phenotypically characterize 5,000 knockout mouse lines, here we identify 410 lethal genes during the production of the first 1,751 unique gene knockouts. Using a standardized phenotyping platform that incorporates high-resolution 3D imaging, we identify phenotypes at multiple time points for previously uncharacterized genes and additional phenotypes for genes with previously reported mutant phenotypes. Unexpectedly, our analysis reveals that incomplete penetrance and variable expressivity are common even on a defined genetic background. In addition, we show that human disease genes are enriched for essential genes, thus providing a dataset that facilitates the prioritization and validation of mutations identified in clinical sequencing efforts.


PLOS Genetics | 2013

Adult Onset Global Loss of the Fto Gene Alters Body Composition and Metabolism in the Mouse

Fiona McMurray; Chris Church; Rachel Larder; George Nicholson; Sara Wells; Lydia Teboul; Y.C. Loraine Tung; Debra Rimmington; Fatima Bosch; Veronica Jimenez; Giles S. H. Yeo; Stephen O'Rahilly; Frances M. Ashcroft; Anthony P. Coll; Roger D. Cox

The strongest BMI–associated GWAS locus in humans is the FTO gene. Rodent studies demonstrate a role for FTO in energy homeostasis and body composition. The phenotypes observed in loss of expression studies are complex with perinatal lethality, stunted growth from weaning, and significant alterations in body composition. Thus understanding how and where Fto regulates food intake, energy expenditure, and body composition is a challenge. To address this we generated a series of mice with distinct temporal and spatial loss of Fto expression. Global germline loss of Fto resulted in high perinatal lethality and a reduction in body length, fat mass, and lean mass. When ratio corrected for lean mass, mice had a significant increase in energy expenditure, but more appropriate multiple linear regression normalisation showed no difference in energy expenditure. Global deletion of Fto after the in utero and perinatal period, at 6 weeks of age, removed the high lethality of germline loss. However, there was a reduction in weight by 9 weeks, primarily as loss of lean mass. Over the subsequent 10 weeks, weight converged, driven by an increase in fat mass. There was a switch to a lower RER with no overall change in food intake or energy expenditure. To test if the phenotype can be explained by loss of Fto in the mediobasal hypothalamus, we sterotactically injected adeno-associated viral vectors encoding Cre recombinase to cause regional deletion. We observed a small reduction in food intake and weight gain with no effect on energy expenditure or body composition. Thus, although hypothalamic Fto can impact feeding, the effect of loss of Fto on body composition is brought about by its actions at sites elsewhere. Our data suggest that Fto may have a critical role in the control of lean mass, independent of its effect on food intake.


PLOS Genetics | 2011

Uncoupling antisense-mediated silencing and DNA methylation in the imprinted Gnas cluster.

Christine M. Williamson; Simon T. Ball; Claire Dawson; Stuti Mehta; Colin V. Beechey; Martin Fray; Lydia Teboul; T. Neil Dear; Gavin Kelsey; Jo Peters

There is increasing evidence that non-coding macroRNAs are major elements for silencing imprinted genes, but their mechanism of action is poorly understood. Within the imprinted Gnas cluster on mouse chromosome 2, Nespas is a paternally expressed macroRNA that arises from an imprinting control region and runs antisense to Nesp, a paternally repressed protein coding transcript. Here we report a knock-in mouse allele that behaves as a Nespas hypomorph. The hypomorph mediates down-regulation of Nesp in cis through chromatin modification at the Nesp promoter but in the absence of somatic DNA methylation. Notably there is reduced demethylation of H3K4me3, sufficient for down-regulation of Nesp, but insufficient for DNA methylation; in addition, there is depletion of the H3K36me3 mark permissive for DNA methylation. We propose an order of events for the regulation of a somatic imprint on the wild-type allele whereby Nespas modulates demethylation of H3K4me3 resulting in repression of Nesp followed by DNA methylation. This study demonstrates that a non-coding antisense transcript or its transcription is associated with silencing an overlapping protein-coding gene by a mechanism independent of DNA methylation. These results have broad implications for understanding the hierarchy of events in epigenetic silencing by macroRNAs.


Molecular and Cellular Biology | 2014

TPC1 Has Two Variant Isoforms, and Their Removal Has Different Effects on Endo-Lysosomal Functions Compared to Loss of TPC2

Margarida Ruas; Kai-Ting Chuang; Lianne C. Davis; Areej Al-Douri; Patricia W. Tynan; Ruth Tunn; Lydia Teboul; Antony Galione; John Parrington

ABSTRACT Organelle ion homeostasis within the endo-lysosomal system is critical for physiological functions. Two-pore channels (TPCs) are cation channels that reside in endo-lysosomal organelles, and overexpression results in endo-lysosomal trafficking defects. However, the impact of a lack of TPC expression on endo-lysosomal trafficking is unknown. Here, we characterize Tpcn1 expression in two transgenic mouse lines (Tpcn1XG716 and Tpcn1T159) and show expression of a novel evolutionarily conserved Tpcn1B transcript from an alternative promoter, raising important questions regarding the status of Tpcn1 expression in mice recently described to be Tpcn1 knockouts. We show that the transgenic Tpcn1T159 line lacks expression of both Tpcn1 isoforms in all tissues analyzed. Using mouse embryonic fibroblasts (MEFs) from Tpcn1−/− and Tpcn2−/− animals, we show that a lack of Tpcn1 or Tpcn2 expression has no significant impact on resting endo-lysosomal pH or morphology. However, differential effects in endo-lysosomal function were observed upon the loss of Tpcn1 or Tpcn2 expression; thus, while Tpcn1−/− MEFs have impaired trafficking of cholera toxin from the plasma membrane to the Golgi apparatus, Tpcn2−/− MEFs show slower kinetics of ligand-induced platelet-derived growth factor receptor β (PDGFRβ) degradation, which is dependent on trafficking to lysosomes. Our findings indicate that TPC1 and TPC2 have important but distinct roles in the endo-lysosomal pathway.


Genome Biology | 2009

Deep short-read sequencing of chromosome 17 from the mouse strains A/J and CAST/Ei identifies significant germline variation and candidate genes that regulate liver triglyceride levels

Ian Sudbery; Jim Stalker; Jared T. Simpson; Thomas M. Keane; Alistair G. Rust; Klaudia Walter; Dee Lynch; Lydia Teboul; Steve D.M. Brown; Heng Li; Zemin Ning; Joseph H. Nadeau; Colleen M. Croniger; Richard Durbin; David J. Adams

Genome sequences are essential tools for comparative and mutational analyses. Here we present the short read sequence of mouse chromosome 17 from the Mus musculus domesticus derived strain A/J, and the Mus musculus castaneus derived strain CAST/Ei. We describe approaches for the accurate identification of nucleotide and structural variation in the genomes of vertebrate experimental organisms, and show how these techniques can be applied to help prioritize candidate genes within quantitative trait loci.


Methods in Enzymology | 2009

Chapter 25 Insulin Secretion from β-Cells is Affected by Deletion of Nicotinamide Nucleotide Transhydrogenase

Kenju Shimomura; Juris Galvanovskis; Michelle Goldsworthy; Alison Hugill; Stephan Kaizak; Angela Lee; Nicholas A. Meadows; Mohamed Mohideen Quwailid; Jan Rydström; Lydia Teboul; Fran Ashcroft; Roger D. Cox

Nicotinamide nucleotide transhydrogenase (NNT) is an inner mitochondrial membrane transmembrane protein involved in regenerating NADPH, coupled with proton translocation across the inner membrane. We have shown that a defect in Nnt function in the mouse, and specifically within the beta-cell, leads to a reduction in insulin secretion. This chapter describes methods for examining Nnt function in the mouse. This includes generating in vivo models with point mutations and expression of Nnt by transgenesis, and making in vitro models, by silencing of gene expression. In addition, techniques are described to measure insulin secretion, calcium and hydrogen peroxide concentrations, membrane potential, and NNT activity. These approaches and techniques can also be applied to other genes of interest.


Molecular and Cellular Biology | 2012

New Mutations at the Imprinted Gnas Cluster Show Gene Dosage Effects of Gsα in Postnatal Growth and Implicate XLαs in Bone and Fat Metabolism but Not in Suckling

Sally A. Eaton; Christine M. Williamson; Simon T. Ball; Colin V. Beechey; Lee Moir; Jessica Edwards; Lydia Teboul; Mark Maconochie; Jo Peters

ABSTRACT The imprinted Gnas cluster is involved in obesity, energy metabolism, feeding behavior, and viability. Relative contribution of paternally expressed proteins XLαs, XLN1, and ALEX or a double dose of maternally expressed Gsα to phenotype has not been established. In this study, we have generated two new mutants (Ex1A-T-CON and Ex1A-T) at the Gnas cluster. Paternal inheritance of Ex1A-T-CON leads to loss of imprinting of Gsα, resulting in preweaning growth retardation followed by catch-up growth. Paternal inheritance of Ex1A-T leads to loss of imprinting of Gsα and loss of expression of XLαs and XLN1. These mice have severe preweaning growth retardation and incomplete catch-up growth. They are fully viable probably because suckling is unimpaired, unlike mutants in which the expression of all the known paternally expressed Gnasxl proteins (XLαs, XLN1 and ALEX) is compromised. We suggest that loss of ALEX is most likely responsible for the suckling defects previously observed. In adults, paternal inheritance of Ex1A-T results in an increased metabolic rate and reductions in fat mass, leptin, and bone mineral density attributable to loss of XLαs. This is, to our knowledge, the first report describing a role for XLαs in bone metabolism. We propose that XLαs is involved in the regulation of bone and adipocyte metabolism.


Journal of Biological Chemistry | 2015

Nicotinic Acid Adenine Dinucleotide Phosphate (NAADP) and Endolysosomal Two-pore Channels Modulate Membrane Excitability and Stimulus-Secretion Coupling in Mouse Pancreatic β Cells

Abdelilah Arredouani; Margarida Ruas; Stephan C. Collins; Raman Parkesh; Frederick Clough; Toby Pillinger; George Coltart; Katja Rietdorf; Andrew Royle; Paul Johnson; Matthias Braun; Quan Zhang; William Sones; Kenju Shimomura; Anthony J. Morgan; Alexander M. Lewis; Kai-Ting Chuang; Ruth Tunn; Joaquin Gadea; Lydia Teboul; Paula M. Heister; Patricia W. Tynan; Elisa A. Bellomo; Guy A. Rutter; Patrik Rorsman; Grant C. Churchill; John Parrington; Antony Galione

Background: TPCs are regulated by NAADP and other factors. Results: NAADP-induced Ca2+ release from acidic stores evokes depolarizing currents in pancreatic β cells. Inhibition of NAADP signaling or TPC knock out attenuates Ca2+ signaling and insulin secretion. Conclusion: NAADP-evoked Ca2+ release enhances β cell excitability and insulin secretion in response to glucose or sulfonylureas. Significance: NAADP signaling pathways offer novel therapeutic targets for diabetes treatment. Pancreatic β cells are electrically excitable and respond to elevated glucose concentrations with bursts of Ca2+ action potentials due to the activation of voltage-dependent Ca2+ channels (VDCCs), which leads to the exocytosis of insulin granules. We have examined the possible role of nicotinic acid adenine dinucleotide phosphate (NAADP)-mediated Ca2+ release from intracellular stores during stimulus-secretion coupling in primary mouse pancreatic β cells. NAADP-regulated Ca2+ release channels, likely two-pore channels (TPCs), have recently been shown to be a major mechanism for mobilizing Ca2+ from the endolysosomal system, resulting in localized Ca2+ signals. We show here that NAADP-mediated Ca2+ release from endolysosomal Ca2+ stores activates inward membrane currents and depolarizes the β cell to the threshold for VDCC activation and thereby contributes to glucose-evoked depolarization of the membrane potential during stimulus-response coupling. Selective pharmacological inhibition of NAADP-evoked Ca2+ release or genetic ablation of endolysosomal TPC1 or TPC2 channels attenuates glucose- and sulfonylurea-induced membrane currents, depolarization, cytoplasmic Ca2+ signals, and insulin secretion. Our findings implicate NAADP-evoked Ca2+ release from acidic Ca2+ storage organelles in stimulus-secretion coupling in β cells.

Collaboration


Dive into the Lydia Teboul's collaboration.

Top Co-Authors

Avatar

Sara Wells

Medical Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yann Herault

University of Strasbourg

View shared research outputs
Top Co-Authors

Avatar

Martin Fray

Medical Research Council

View shared research outputs
Top Co-Authors

Avatar

Roger D. Cox

Medical Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Allan Bradley

Wellcome Trust Sanger Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge