Lynda Knott
University of Bristol
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Lynda Knott.
Bone | 1998
Lynda Knott; Allen J. Bailey
Bone collagen cross-links are now widely used to assess bone resorption levels in many metabolic bone diseases. The post-translational modifications of bone and other mineralizing collagens are significantly different from those of other type I collagen matrices, a fact that has been exploited during recent advances in the development of biochemical markers of bone resorption. The enzymatic collagen cross-linking mechanism is based upon aldehyde formation from specific telopeptide lysine or hydroxylysine residues. The immature ketoimine cross-links in bone form via the condensation of a telopeptide aldehyde with a helical lysine or hydroxylysine. Subsequent maturation to the pyridinoline and pyrrole cross-links occur by further reaction of the ketoimines with telopeptide aldehydes. In mineralizing tissues, a relatively low level of lysyl hydroxylation results in low levels of hydroxylysyl pyridinoline, and the occurrence of the largely bone specific lysyl pyridinoline and pyrrolic cross-links. The collagen post-translational modifications appear to play an integral role in matrix mineralization. The matrix of the turkey tendon only mineralizes after a remodeling of the collagen and the subsequent formation of a modified matrix more typical of bone than tendon. Further, disturbances in the post-translational modification of collagen can also affect the mineralization density and crystal structure of the tissue. In addition to their use as a convenient measure of matrix degradation, collagen cross-links are of significant importance for the biomechanical integrity of bone. Recent studies of osteoporotic bone, for example, have demonstrated that subtle perturbations in the pattern of lysine hydroxylation result in changes in the cross-link profile. These alterations, specifically changes in the level of the pyrrolic cross-link, also correlate with the strength of the bone. Further research into the biochemistry of bone collagen cross-links may expand current understanding and their clinical application in metabolic bone disease. This review also demonstrates the potential for further study into this area to provide more subtle information into the mechanisms and etiology of disease and aging of mineralizing tissues.
Mechanisms of Ageing and Development | 1998
Allen J. Bailey; Robert Gordon Paul; Lynda Knott
The deleterious age-related changes in collagen that manifest in the stiffening of the joints, the vascular system and the renal and retinal capillaries are primarily due to the intermolecular cross-linking of the collagen molecules within the tissues. The formation of cross-links was elegantly demonstrated by Verzar over 40 years ago but the nature and mechanisms are only now being unravelled. Cross-linking involves two different mechanisms, one a precise enzymically controlled cross-linking during development and maturation and the other an adventitious non-enzymic mechanism following maturation of the tissue. It is this additional non-enzymic cross-linking, known as glycation, involving reaction with glucose and subsequent oxidation products of the complex, that is the major cause of dysfunction of collagenous tissues in old age. The process is accelerated in diabetic subjects due to the higher levels of glucose. The effect of glycation on cell-matrix interactions is now being studied and may be shown to be an equally important aspect of ageing of collagen. An understanding of these mechanisms is now leading to the development of inhibitors of glycation and compounds capable of cleaving the cross-links, thus alleviating the devastating effects of ageing.
The International Journal of Biochemistry & Cell Biology | 2002
Allen J. Bailey; Trevor J. Sims; Lynda Knott
The metabolism and total amount of the collagen of subchondral bone are increased several fold in osteoathritic femurs compared with controls. We now report for the first time that the quality of the collagen is modified by the formation of type I homotrimer. The homotrimer fibre has been reported to possess a reduced mechanical strength and mineralisation in bone. The presence of the latter therefore accounts for narrower disorganised collagen fibres and decreased mineralisation, and a reduction in mechanical stability of the osteoarthritic femoral head. These changes in the subchondral bone are likely to be of considerable importance in the pathogenesis of osteoarthritis.
Osteoarthritis and Cartilage | 2011
Lynda Knott; N.C. Avery; Anthony P. Hollander; John F. Tarlton
Summary Objective To examine effects of high omega-3 (n-3) polyunsaturated fatty acid (PUFA) diets on development of osteoarthritis (OA) in a spontaneous guinea pig model, and to further characterise pathogenesis in this model. Modern diets low in n-3 PUFAs have been linked with increases in inflammatory disorders, possibly including OA. However, n-3 is also thought to increases bone density, which is a possible contributing factor in OA. Therefore we aim to determine the net influence of n-3 in disease development. Method OA-prone Dunkin-Hartley (DH) Guinea pigs were compared with OA-resistant Bristol Strain-2s (BS2) each fed a standard or an n-3 diet from 10 to 30 weeks (10/group). We examined cartilage and subchondral bone pathology by histology, and biochemistry, including collagen cross-links, matrix metalloproteinases (MMPs), alkaline phosphatase, glycosaminoglycan (GAG), and denatured type II collagen. Results Dietary n-3 reduced disease in OA-prone animals. Most cartilage parameters were modified by n-3 diet towards those seen in the non-pathological BS2 strain – significantly active MMP-2, lysyl-pyridinoline and total collagen cross-links – the only exception being pro MMP-9 which was lower in the BS2, yet increased with n-3. GAG content was higher and denatured type II lower in the n-3 group. Subchondral bone parameters in the DH n-3 group also changed towards those seen in the non-pathological strain, significantly calcium:phosphate ratios and epiphyseal bone density. Conclusion Dietary n-3 PUFA reduced OA in the prone strain, and most disease markers were modified towards those of the non-OA strain, though not all significantly so. Omega-3 did not increase markers of pathology in either strain.
Development Growth & Differentiation | 2003
Nathan L. Brown; Lynda Knott; Eugene Halligan; Sj Yarram; Jason P. Mansell; Jonathan R Sandy
The mammalian face is assembled in utero in a series of complex and interdependent molecular, cell and tissue processes. The orofacial complex appears to be exquisitely sensitive to genetic and environmental influence and this explains why clefts of the lip and palate are the most common congenital anomaly in humans (one in 700 live births). In this study, microarray technology was used to identify genes that may play pivotal roles in normal murine palatogenesis. mRNA was isolated from murine embryonic palatal shelves oriented vertically (before elevation), horizontally (following elevation, before contact), and following fusion. Changes in gene expression between the three different stages were analyzed with GeneChip® microarrays. A number of genes were upregulated or downregulated, and large changes were seen in the expression of loricrin, glutamate decarboxylase, gamma‐amino butyric acid type A receptor beta3 subunit, frizzled, Wnt‐5a, metallothionein, annexin VIII, LIM proteins, Sox1, plakophilin1, cathepsin K and creatine kinase. In this paper, the changes in genetic profile of the developing murine palate are presented, and the possible role individual genes/proteins may play during normal palate development are discussed. Candidate genes with a putative role in cleft palate are also highlighted.
Calcified Tissue International | 2007
Helen C. Roberts; Lynda Knott; Nicholas C. Avery; Timothy M. Cox; Martin J. Evans; Alison R. Hayman
Tartrate-resistant acid phosphatase (TRAP) is an iron-containing protein that is highly expressed by osteoclasts, macrophages, and dendritic cells. The enzyme is secreted by osteoclasts during bone resorption, and serum TRAP activity correlates with resorptive activity in disorders of bone metabolism. TRAP is essential for normal skeletal development. In knockout mice lacking TRAP, bone shape and modeling is altered with increased mineral density. Here, we report the effect of TRAP on the biochemical and biomechanical properties of collagen, the major protein constituting the bone matrix, using these mice. Femurs from TRAP-/- and wild-type mice were used in these studies. The biomechanical properties were investigated using a three-point bending technique. Collagen synthesis was determined by measuring cross-link content using high-performance liquid chromatography and amino acid analysis. Collagen degradation was determined by measuring matrix metalloproteinase-2 (MMP-2) activity. The rates of collagen synthesis and degradation were significantly greater in bones from TRAP-/- mice compared with wild type. At 8 weeks, there was an increase in the intermediate cross-links but no significant difference in animals aged 6 months. There was a significant increase in mature cross-links at both ages. A significant increase in MMP-2 production both pro and active was observed. A significant increase in ultimate stress and Young’s modulus of elasticity was needed to fracture the bones from mice deficient in TRAP. We conclude that both synthesis as well as degradation of collagen are increased when TRAP is absent in mice at 8 weeks and 6 months of age, showing that TRAP has an important role in the metabolism of collagen.
Bone | 2013
John F. Tarlton; Lj Wilkins; Michael J. Toscano; N.C. Avery; Lynda Knott
INTRODUCTION The omega-3 and omega-6 polyunsaturated fatty acids (PUFAs) are the immediate precursors to a number of important mediators of immunity, inflammation and bone function, with products of omega-6 generally thought to promote inflammation and favour bone resorption. Western diets generally provide a 10 to 20-fold deficit in omega-3 PUFAs compared with omega-6, and this is thought to have contributed to the marked rise in incidence of disorders of modern human societies, such as heart disease, colitis and perhaps osteoporosis. Many of our food production animals, fed on grains rich in omega-6, are also exposed to a dietary deficit in omega-3, with perhaps similar health consequences. Bone fragility due to osteoporotic changes in laying hens is a major economic and welfare problem, with our recent estimates of breakage rates indicating up to 95% of free range hens suffer breaks during lay. METHODS Free range hens housed in full scale commercial systems were provided diets supplemented with omega-3 alpha linolenic acid, and the skeletal benefits were investigated by comparison to standard diets rich in omega-6. RESULTS There was a significant 40-60% reduction in keel bone breakage rate, and a corresponding reduction in breakage severity in the omega-3 supplemented hens. There was significantly greater bone density and bone mineral content, alongside increases in total bone and trabecular volumes. The mechanical properties of the omega-3 supplemented hens were improved, with strength, energy to break and stiffness demonstrating significant increases. Alkaline phosphatase (an osteoblast marker) and tartrate-resistant acid phosphatase (an osteoclast marker) both showed significant increases with the omega-3 diets, indicating enhanced bone turnover. This was corroborated by the significantly lower levels of the mature collagen crosslinks, hydroxylysyl pyridinoline, lysyl pyridinoline and histidinohydroxy-lysinonorleucine, with a corresponding significant shift in the mature:immature crosslink ratio. CONCLUSIONS The improved skeletal health in laying hens corresponds to as many as 68million fewer hens suffering keel fractures in the EU each year. The biomechanical and biochemical evidence suggests that increased bone turnover has enhanced the bone mechanical properties, and that this may suggest potential benefits for human osteoporosis.
In Vitro Cellular & Developmental Biology – Animal | 2003
Lynda Knott; Tom Hartridge; Nathan L. Brown; Jason P. Mansell; Jonathon R. Sandy
SummaryCleft palate is the most common craniofacial anomaly. Affected individuals require extensive medical and psychosocial support. Although cleft plate has a complex and poorly understood etiology, low maternal folate is known to be a risk factor for craniofacial anomalies. Folate deficiency results in elevated homocysteine levels, which may disturb palatogenesis by several mechanism, including oxidative stress and perturbation of matrix metabolism. We examined the effect of homocysteine-induced oxidative stress on human embryonic palatal mesenchyme (HEPM) cells and demonstrated that biologically relevant levels of homocysteine (20–100 μM) with copper (10 μM) resulted in dose-dependant apoptosis, which was prevented by addition of catalase but not superoxide dismutase. Incubation of murine palates in organ culture with homocysteine (100 μM) and CuSO4 (10 μM) resulted in a decrease in palate fusion, which was not significant. Gelatin gel zymograms of HEPM cell-conditioned media and extracts of cultured murine palates, however, showed no change in the expression or activation of pro-matrix metalloproteinase-2 with homocysteine (20 μM-1 mM) with or without CuSO4 (10 μM). We have demonstrated that biologically relevant levels of homocysteine in combination with copper can results in apoptosis as a result of oxidative stress; therefore, homocysteine has the potential to disrupt normal palate development.
Biochemical Journal | 1995
Lynda Knott; C C Whitehead; Robert Fleming; Allen J. Bailey
Biochemical Journal | 1997
Lynda Knott; John F. Tarlton; Allen J. Bailey