Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lynda S. Ostedgaard is active.

Publication


Featured researches published by Lynda S. Ostedgaard.


Science | 2008

Disruption of the CFTR Gene Produces a Model of Cystic Fibrosis in Newborn Pigs

Christopher S. Rogers; David A. Stoltz; David K. Meyerholz; Lynda S. Ostedgaard; Tatiana Rokhlina; Peter J. Taft; Mark P. Rogan; Alejandro A. Pezzulo; Philip H. Karp; Omar A. Itani; Amanda C. Kabel; Christine L. Wohlford-Lenane; Greg J. Davis; Robert A. Hanfland; Tony L. Smith; Melissa Samuel; David Wax; Clifton N. Murphy; August Rieke; Kristin M. Whitworth; Aliye Uc; Timothy D. Starner; Kim A. Brogden; Joel Shilyansky; Paul B. McCray; Joseph Zabner; Randall S. Prather; Michael J. Welsh

Almost two decades after CFTR was identified as the gene responsible for cystic fibrosis (CF), we still lack answers to many questions about the pathogenesis of the disease, and it remains incurable. Mice with a disrupted CFTR gene have greatly facilitated CF studies, but the mutant mice do not develop the characteristic manifestations of human CF, including abnormalities of the pancreas, lung, intestine, liver, and other organs. Because pigs share many anatomical and physiological features with humans, we generated pigs with a targeted disruption of both CFTR alleles. Newborn pigs lacking CFTR exhibited defective chloride transport and developed meconium ileus, exocrine pancreatic destruction, and focal biliary cirrhosis, replicating abnormalities seen in newborn humans with CF. The pig model may provide opportunities to address persistent questions about CF pathogenesis and accelerate discovery of strategies for prevention and treatment.


Science Translational Medicine | 2010

Cystic fibrosis pigs develop lung disease and exhibit defective bacterial eradication at birth.

David A. Stoltz; David K. Meyerholz; Alejandro A. Pezzulo; Mark P. Rogan; Greg J. Davis; Robert A. Hanfland; Chris Wohlford-Lenane; Cassie L. Dohrn; Jennifer A. Bartlett; George A. Nelson; Eugene H. Chang; Peter J. Taft; Paula S. Ludwig; Mira Estin; Emma E. Hornick; Janice L. Launspach; Melissa Samuel; Tatiana Rokhlina; Philip H. Karp; Lynda S. Ostedgaard; Aliye Uc; Timothy D. Starner; Alexander R. Horswill; Kim A. Brogden; Randall S. Prather; Sandra S. Richter; Joel Shilyansky; Paul B. McCray; Joseph Zabner; Michael J. Welsh

The lungs of just-born piglets with cystic fibrosis fail to efficiently eliminate bacteria, suggesting that lung problems in cystic fibrosis patients may be secondary to impaired antibacterial defense mechanisms. A Matter of Life and Breath The CafePress and Zazzle Web sites and most yoga-wear boutiques sport an array of teeshirts, bumper stickers, and water bottles prepared to offer simple advice to those living a harried life: “Just breathe.” Not so simple for a cystic fibrosis (CF) patient. Very early on, physicians recognized that difficulty breathing was the most ominous of the mosaic of symptoms that characterize this syndrome. Indeed, lung disease is the main cause of death in cystic fibrosis patients, but the lack of an animal model that mirrors the CF lung pathology seen in people has slowed translational cystic fibrosis research. Now, Stoltz et al. report findings in cystic fibrosis pigs that survive long enough to develop human-like lung disease. At the heart of this recessive genetic disease is the cystic fibrosis transmembrane conductance regulator (CFTR), a chloride-ion channel. CF-causing mutations in the CFTR gene give rise to an aberrant channel that is defective in its ability to transport ions and water across cell membranes, resulting in a dizzying array of defects in the pancreas, intestines, reproductive system, liver, and lungs. It has been hypothesized that the impaired channel causes cells that line body cavities and passageways to become coated with thick mucus. In such an environment, bacteria thrive, leading to the chronic infections characteristic of this disease. However, the precise mechanisms by which CFTR mutations manifest as the complex phenotypes that constitute CF remain unclear, particularly with respect to the inflamed and infected airways of the CF lung. Despite substantial research efforts, scientists have been unable to achieve two crucial goals,to mold an animal model that mimics human CF lung disease and to pinpoint the trigger of CF lung pathology in pristine airways. Stoltz et al. tackled both of these obstacles by producing genetically modified CF pigs and analyzing their airways from birth to 6 months of age. Their studies revealed a spontaneously arising human-like lung disease that developed over time and had the CF hallmarks: multibacterial infections, inflammation, and mucus buildup. Although the lungs of the newborn CF piglets were not yet inflamed, they were less likely to be sterile and less able to eliminate bacteria that had been introduced into their lungs, relative to wild-type animals. Together, these findings suggest that bacterial infiltration spurs the pattern of lung inflammation and pathogenesis associated with CF. Having a clearer conception of CF lung disease can help clinicians devise preventive treatments that can be initiated early in the lives of CF patients. Such interventions may let CF suffers live and breath more fully. Lung disease causes most of the morbidity and mortality in cystic fibrosis (CF). Understanding the pathogenesis of this disease has been hindered, however, by the lack of an animal model with characteristic features of CF. To overcome this problem, we recently generated pigs with mutated CFTR genes. We now report that, within months of birth, CF pigs spontaneously developed hallmark features of CF lung disease, including airway inflammation, remodeling, mucus accumulation, and infection. Their lungs contained multiple bacterial species, suggesting that the lungs of CF pigs have a host defense defect against a wide spectrum of bacteria. In humans, the temporal and causal relations between inflammation and infection have remained uncertain. To investigate these processes, we studied newborn pigs. Their lungs showed no inflammation but were less often sterile than controls. Moreover, after introduction of bacteria into their lungs, pigs with CF failed to eradicate bacteria as effectively as wild-type pigs. These results suggest that impaired bacterial elimination is the pathogenic event that initiates a cascade of inflammation and pathology in CF lungs. Our finding that pigs with CF have a host defense defect against bacteria within hours of birth provides an opportunity to further investigate CF pathogenesis and to test therapeutic and preventive strategies that could be deployed before secondary consequences develop.


Journal of Clinical Investigation | 1992

Localization of cystic fibrosis transmembrane conductance regulator in chloride secretory epithelia

Gerene M. Denning; Lynda S. Ostedgaard; Seng H. Cheng; Alan E. Smith; Michael Welsh

Cystic fibrosis is caused by mutations in the gene coding for the cystic fibrosis transmembrane conductance regulator (CFTR). To further our understanding of CFTRs function and regulation, we used confocal immunofluorescence microscopy to localize CFTR in cells stained with monoclonal antibodies against different regions of the protein: the R (regulatory) domain (M13-1), the COOH terminus (M1-4), and a predicted extracellular domain (M6-4). All three antibodies immunoprecipitated a 155-170-kD polypeptide from cells expressing CFTR. Each antibody stained HeLa and 3T3 cells expressing recombinant CFTR, but not cells lacking endogenous CFTR: HeLa, NIH-3T3, and endothelial cells. For localization studies, we used epithelial cell lines that express endogenous CFTR and have a cAMP-activated apical Cl- permeability: T84, CaCo2, and HT29 clone 19A. Our results demonstrate that CFTR is an apical membrane protein in these epithelial cells because (a) staining for CFTR resembled staining for several apical membrane markers, but differed from staining for basolateral membrane proteins; (b) thin sections of cell monolayers show staining at the apical membrane; and (c) M6-4, an extracellular domain antibody, stained the apical surface of nonpermeabilized cells. Our results do not exclude the possibility that CFTR is also located beneath the apical membrane. Increasing intracellular cAMP levels did not change the apical membrane staining pattern for CFTR. Moreover, insertion of channels by vesicle fusion with the apical membrane was not required for cAMP-mediated increases in apical membrane Cl- conductance. These results indicate that CFTR is located in the apical plasma membrane of Cl(-)-secreting epithelia, a result consistent with the conclusion that Cl TR is an apical membrane chloride channel.


Neuron | 1992

Cystic fibrosis transmembrane conductance regulator : a chloride channel with novel regulation

Michael J. Welsh; Matthew P. Anderson; Devra P. Rich; Herbert A. Berger; Gerene M. Denning; Lynda S. Ostedgaard; David N. Sheppard; Seng H. Cheng; Richard J. Gregory; Alan E. Smith

Michael J. Welsh,* Matthew P. Anderson,* Devra P. Rich,* Herbert A. Berger,* Gerene M. Denning,* Lynda S. Ostedgaard,* David N. Sheppard,* Seng H. Cheng,+ Richard J. Gregory,+ and Alan E. Smith+ *Howard Hughes Medical Institute Department of internal Medicine Department of Physiology and Biophysics University of Iowa College of Medicine Iowa City, Iowa 52242 +Genzyme Corporation Framingham, Massachusetts 01701


Science | 2014

Impaired Mucus Detachment Disrupts Mucociliary Transport in a Piglet Model of Cystic Fibrosis

Mark J. Hoegger; Anthony J. Fischer; James D. McMenimen; Lynda S. Ostedgaard; Alexander J. Tucker; Maged A. Awadalla; Thomas O. Moninger; Andrew S. Michalski; Eric A. Hoffman; Joseph Zabner; David A. Stoltz; Michael J. Welsh

A breathtaking tale of sticky mucus Patients with cystic fibrosis have difficulty breathing because their airways are clogged with thick mucus. Does this mucus accumulate because there is a defect in the way it is produced? Or does it accumulate because of other disease features, such as dehydration or airway wall remodeling? Distinguishing between these possibilities is important for future drug development. In a study of piglets with cystic fibrosis, Hoegger et al. identify mucus production as the primary defect (see the Perspective by Wine). The airway glands of the piglets synthesized strands of mucus normally, but the strands were never released and stayed tethered to the gland ducts. Science, this issue p. 818; see also p. 730 Lung disease in pigs with cystic fibrosis is caused by aberrant tethering of mucus to the airway glands that produce it. [Also see Perspective by Wine] Lung disease in people with cystic fibrosis (CF) is initiated by defective host defense that predisposes airways to bacterial infection. Advanced CF is characterized by a deficit in mucociliary transport (MCT), a process that traps and propels bacteria out of the lungs, but whether this deficit occurs first or is secondary to airway remodeling has been unclear. To assess MCT, we tracked movement of radiodense microdisks in airways of newborn piglets with CF. Cholinergic stimulation, which elicits mucus secretion, substantially reduced microdisk movement. Impaired MCT was not due to periciliary liquid depletion; rather, CF submucosal glands secreted mucus strands that remained tethered to gland ducts. Inhibiting anion secretion in non-CF airways replicated CF abnormalities. Thus, impaired MCT is a primary defect in CF, suggesting that submucosal glands and tethered mucus may be targets for early CF treatment.


American Journal of Physiology-lung Cellular and Molecular Physiology | 2008

The porcine lung as a potential model for cystic fibrosis

Christopher S. Rogers; William M. Abraham; Kim A. Brogden; John F. Engelhardt; John T. Fisher; Paul B. McCray; Geoffrey McLennan; David K. Meyerholz; Eman Namati; Lynda S. Ostedgaard; Randall S. Prather; Juan R. Sabater; David A. Stoltz; Joseph Zabner; Michael J. Welsh

Airway disease currently causes most of the morbidity and mortality in patients with cystic fibrosis (CF). However, understanding the pathogenesis of CF lung disease and developing novel therapeutic strategies have been hampered by the limitations of current models. Although the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR) has been targeted in mice, CF mice fail to develop lung or pancreatic disease like that in humans. In many respects, the anatomy, biochemistry, physiology, size, and genetics of pigs resemble those of humans. Thus pigs with a targeted CFTR gene might provide a good model for CF. Here, we review aspects of porcine airways and lung that are relevant to CF.


Science Translational Medicine | 2011

The ΔF508 Mutation Causes CFTR Misprocessing and Cystic Fibrosis–Like Disease in Pigs

Lynda S. Ostedgaard; David K. Meyerholz; Jeng Haur Chen; Alejandro A. Pezzulo; Philip H. Karp; Tatiana Rokhlina; Sarah E. Ernst; Robert A. Hanfland; Leah R. Reznikov; Paula S. Ludwig; Mark P. Rogan; Greg J. Davis; Cassie L. Dohrn; Christine L. Wohlford-Lenane; Peter J. Taft; Michael V. Rector; Emma E. Hornick; Boulos S. Nassar; Melissa Samuel; Yuping Zhang; Sandra S. Richter; Aliye Uc; Joel Shilyansky; Randall S. Prather; Paul B. McCray; Joseph Zabner; Michael J. Welsh; David A. Stoltz

A common mutation in human cystic fibrosis, CFTR-ΔF508, results in misprocessed CFTR and a cystic fibrosis–like clinical phenotype in pigs. Four Legs Good, Two Legs Bad In Animal Farm, George Orwell describes a pasture in which the pigs lead an animal revolt, resulting eventually in the porcine dwellers becoming indistinguishable from the human ones against whom they revolted. Scientists similarly wish for pigs to model humans, although as large animal models of human disease, not despotic rulers. Ostedgaard et al. extended this idea to cystic fibrosis (CF), generating pigs that carry the most common human CF mutation, Δ508. CF is a devastating genetic disease characterized by difficulty breathing, progressive disability, persistent infections, and, often, early death. CF is caused by a mutation in the gene that encodes the CF transmembrane conductance regulator (CFTR), which is an anion channel that modulates the components of sweat, digestive juices, and mucus. The most common mutation in CF patients results in an altered version of CFTR, CFTR-Δ508, which is found in 1 of 25 people of Caucasian descent. CF is difficult to study in human patients, and mouse models do not accurately reflect the human disease. Pigs may provide a better model of CF because they have more similar anatomy, biochemistry, physiology, size, and genetics to humans than mice. Thus, the authors generated a pig model of CF with the CFTR-Δ508 mutation. Similar to pigs that completely lack expression of CFTR, the CFTR-Δ508 pigs developed CF symptoms that mimicked those in human patients. In these animals, much of the CFTR-Δ508 protein was misprocessed; specifically, it was retained in the endoplasmic reticulum and rapidly degraded. However, pigs with CFTR-Δ508 retained small amounts of CFTR conductance (~6%), although this level of function was not sufficient to prevent disease. This new model may help to determine which levels of CFTR are sufficient for function and, therefore, guide future therapeutic strategies. After all, all animal models are equal, but some are more equal than others. Cystic fibrosis (CF) is an autosomal recessive disease caused by mutations in the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR) anion channel. The most common CF-associated mutation is ΔF508, which deletes a phenylalanine in position 508. In vitro studies indicate that the resultant protein, CFTR-ΔF508, is misprocessed, although the in vivo consequences of this mutation remain uncertain. To better understand the effects of the ΔF508 mutation in vivo, we produced CFTRΔF508/ΔF508 pigs. Our biochemical, immunocytochemical, and electrophysiological data on CFTR-ΔF508 in newborn pigs paralleled in vitro predictions. They also indicated that CFTRΔF508/ΔF508 airway epithelia retain a small residual CFTR conductance, with maximal stimulation producing ~6% of wild-type function. Cyclic adenosine 3′,5′-monophosphate (cAMP) agonists were less potent at stimulating current in CFTRΔF508/ΔF508 epithelia, suggesting that quantitative tests of maximal anion current may overestimate transport under physiological conditions. Despite residual CFTR function, four older CFTRΔF508/ΔF508 pigs developed lung disease similar to human CF. These results suggest that this limited CFTR activity is insufficient to prevent lung or gastrointestinal disease in CF pigs. These data also suggest that studies of recombinant CFTR-ΔF508 misprocessing predict in vivo behavior, which validates its use in biochemical and drug discovery experiments. These findings help elucidate the molecular pathogenesis of the common CF mutation and will guide strategies for developing new therapeutics.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Processing and function of CFTR-ΔF508 are species-dependent

Lynda S. Ostedgaard; Christopher S. Rogers; Qian Dong; Christoph O. Randak; Daniel W. Vermeer; Tatiana Rokhlina; Philip H. Karp; Michael Welsh

Mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) cause cystic fibrosis. The most common mutation, a deletion of the phenylalanine at position 508 (ΔF508), disrupts processing of the protein. Nearly all human CFTR-ΔF508 is retained in the endoplasmic reticulum and degraded, preventing maturation to the plasma membrane. In addition, the F508 deletion reduces the activity of single CFTR channels. Human CFTR-ΔF508 has been extensively studied to better understand its defects. Here, we adopted a cross-species comparative approach, examining human, pig, and mouse CFTR-ΔF508. As with human CFTR-ΔF508, the ΔF508 mutation reduced the single-channel activity of the pig and mouse channels. However, the mutant pig and mouse proteins were at least partially processed like their wild-type counterparts. Moreover, pig and mouse CFTR-ΔF508 partially restored transepithelial Cl− transport to CF airway epithelia. Our data, combined with earlier work, suggest that there is a gradient in the severity of the CFTR-ΔF508 processing defect, with human more severe than pig or mouse. These findings may explain some previously puzzling observations in CF mice, they have important implications for evaluation of potential therapeutics, and they suggest new strategies for discovering the mechanisms that disrupt processing of human CFTR-ΔF508.


Science | 2016

Airway acidification initiates host defense abnormalities in cystic fibrosis mice

Viral Shah; David K. Meyerholz; Xiao Xiao Tang; Leah R. Reznikov; Mahmoud H. Abou Alaiwa; Sarah E. Ernst; Philip H. Karp; Christine L. Wohlford-Lenane; K. P. Heilmann; Mariah R. Leidinger; Patrick D. Allen; Joseph Zabner; Paul B. McCray; Lynda S. Ostedgaard; David A. Stoltz; Christoph O. Randak; Michael J. Welsh

Airway infections put to an acid test Most people with cystic fibrosis suffer from chronic respiratory infections. The mechanistic link between this symptom and the genetic cause of the disease (mutations that compromise the function of the cystic fibrosis transmembrane conductance regulator, CFTR) is not fully understood. Studying animal models, Shah et al. find that in the absence of functional CFTR, the surface liquid in the airways becomes acidic, which impairs host defenses against infection. This acidification occurs through the action of a proton pump called ATP12A. Molecules inhibiting ATP12A could potentially be developed into useful drugs. Science, this issue p. 503 A specific proton pump that acidifies airway surface liquids promotes respiratory infections in cystic fibrosis. Cystic fibrosis (CF) is caused by mutations in the gene that encodes the cystic fibrosis transmembrane conductance regulator (CFTR) anion channel. In humans and pigs, the loss of CFTR impairs respiratory host defenses, causing airway infection. But CF mice are spared. We found that in all three species, CFTR secreted bicarbonate into airway surface liquid. In humans and pigs lacking CFTR, unchecked H+ secretion by the nongastric H+/K+ adenosine triphosphatase (ATP12A) acidified airway surface liquid, which impaired airway host defenses. In contrast, mouse airways expressed little ATP12A and secreted minimal H+; consequently, airway surface liquid in CF and non-CF mice had similar pH. Inhibiting ATP12A reversed host defense abnormalities in human and pig airways. Conversely, expressing ATP12A in CF mouse airways acidified airway surface liquid, impaired defenses, and increased airway bacteria. These findings help explain why CF mice are protected from infection and nominate ATP12A as a potential therapeutic target for CF.


Journal of Clinical Investigation | 2013

Intestinal CFTR expression alleviates meconium ileus in cystic fibrosis pigs

David A. Stoltz; Tatiana Rokhlina; Sarah E. Ernst; Alejandro A. Pezzulo; Lynda S. Ostedgaard; Philip H. Karp; Melissa Samuel; Leah R. Reznikov; Michael V. Rector; Nicholas D. Gansemer; Drake C. Bouzek; Mahmoud H. Abou Alaiwa; Mark J. Hoegger; Paula S. Ludwig; Peter J. Taft; Tanner J Wallen; Christine L. Wohlford-Lenane; James D. McMenimen; Jeng-Haur Chen; Katrina L. Bogan; Ryan J. Adam; Emma E. Hornick; George A. Nelson; Eric A. Hoffman; Eugene H. Chang; Joseph Zabner; Paul B. McCray; Randall S. Prather; David K. Meyerholz; Michael J. Welsh

Cystic fibrosis (CF) pigs develop disease with features remarkably similar to those in people with CF, including exocrine pancreatic destruction, focal biliary cirrhosis, micro-gallbladder, vas deferens loss, airway disease, and meconium ileus. Whereas meconium ileus occurs in 15% of babies with CF, the penetrance is 100% in newborn CF pigs. We hypothesized that transgenic expression of porcine CF transmembrane conductance regulator (pCFTR) cDNA under control of the intestinal fatty acid-binding protein (iFABP) promoter would alleviate the meconium ileus. We produced 5 CFTR-/-;TgFABP>pCFTR lines. In 3 lines, intestinal expression of CFTR at least partially restored CFTR-mediated anion transport and improved the intestinal phenotype. In contrast, these pigs still had pancreatic destruction, liver disease, and reduced weight gain, and within weeks of birth, they developed sinus and lung disease, the severity of which varied over time. These data indicate that expressing CFTR in intestine without pancreatic or hepatic correction is sufficient to rescue meconium ileus. Comparing CFTR expression in different lines revealed that approximately 20% of wild-type CFTR mRNA largely prevented meconium ileus. This model may be of value for understanding CF pathophysiology and testing new preventions and therapies.

Collaboration


Dive into the Lynda S. Ostedgaard's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Philip H. Karp

Roy J. and Lucille A. Carver College of Medicine

View shared research outputs
Top Co-Authors

Avatar

David A. Stoltz

Roy J. and Lucille A. Carver College of Medicine

View shared research outputs
Top Co-Authors

Avatar

David K. Meyerholz

Roy J. and Lucille A. Carver College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alejandro A. Pezzulo

Roy J. and Lucille A. Carver College of Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge