Tatiana Rokhlina
University of Iowa
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Tatiana Rokhlina.
Science | 2008
Christopher S. Rogers; David A. Stoltz; David K. Meyerholz; Lynda S. Ostedgaard; Tatiana Rokhlina; Peter J. Taft; Mark P. Rogan; Alejandro A. Pezzulo; Philip H. Karp; Omar A. Itani; Amanda C. Kabel; Christine L. Wohlford-Lenane; Greg J. Davis; Robert A. Hanfland; Tony L. Smith; Melissa Samuel; David Wax; Clifton N. Murphy; August Rieke; Kristin M. Whitworth; Aliye Uc; Timothy D. Starner; Kim A. Brogden; Joel Shilyansky; Paul B. McCray; Joseph Zabner; Randall S. Prather; Michael J. Welsh
Almost two decades after CFTR was identified as the gene responsible for cystic fibrosis (CF), we still lack answers to many questions about the pathogenesis of the disease, and it remains incurable. Mice with a disrupted CFTR gene have greatly facilitated CF studies, but the mutant mice do not develop the characteristic manifestations of human CF, including abnormalities of the pancreas, lung, intestine, liver, and other organs. Because pigs share many anatomical and physiological features with humans, we generated pigs with a targeted disruption of both CFTR alleles. Newborn pigs lacking CFTR exhibited defective chloride transport and developed meconium ileus, exocrine pancreatic destruction, and focal biliary cirrhosis, replicating abnormalities seen in newborn humans with CF. The pig model may provide opportunities to address persistent questions about CF pathogenesis and accelerate discovery of strategies for prevention and treatment.
Science Translational Medicine | 2010
David A. Stoltz; David K. Meyerholz; Alejandro A. Pezzulo; Mark P. Rogan; Greg J. Davis; Robert A. Hanfland; Chris Wohlford-Lenane; Cassie L. Dohrn; Jennifer A. Bartlett; George A. Nelson; Eugene H. Chang; Peter J. Taft; Paula S. Ludwig; Mira Estin; Emma E. Hornick; Janice L. Launspach; Melissa Samuel; Tatiana Rokhlina; Philip H. Karp; Lynda S. Ostedgaard; Aliye Uc; Timothy D. Starner; Alexander R. Horswill; Kim A. Brogden; Randall S. Prather; Sandra S. Richter; Joel Shilyansky; Paul B. McCray; Joseph Zabner; Michael J. Welsh
The lungs of just-born piglets with cystic fibrosis fail to efficiently eliminate bacteria, suggesting that lung problems in cystic fibrosis patients may be secondary to impaired antibacterial defense mechanisms. A Matter of Life and Breath The CafePress and Zazzle Web sites and most yoga-wear boutiques sport an array of teeshirts, bumper stickers, and water bottles prepared to offer simple advice to those living a harried life: “Just breathe.” Not so simple for a cystic fibrosis (CF) patient. Very early on, physicians recognized that difficulty breathing was the most ominous of the mosaic of symptoms that characterize this syndrome. Indeed, lung disease is the main cause of death in cystic fibrosis patients, but the lack of an animal model that mirrors the CF lung pathology seen in people has slowed translational cystic fibrosis research. Now, Stoltz et al. report findings in cystic fibrosis pigs that survive long enough to develop human-like lung disease. At the heart of this recessive genetic disease is the cystic fibrosis transmembrane conductance regulator (CFTR), a chloride-ion channel. CF-causing mutations in the CFTR gene give rise to an aberrant channel that is defective in its ability to transport ions and water across cell membranes, resulting in a dizzying array of defects in the pancreas, intestines, reproductive system, liver, and lungs. It has been hypothesized that the impaired channel causes cells that line body cavities and passageways to become coated with thick mucus. In such an environment, bacteria thrive, leading to the chronic infections characteristic of this disease. However, the precise mechanisms by which CFTR mutations manifest as the complex phenotypes that constitute CF remain unclear, particularly with respect to the inflamed and infected airways of the CF lung. Despite substantial research efforts, scientists have been unable to achieve two crucial goals,to mold an animal model that mimics human CF lung disease and to pinpoint the trigger of CF lung pathology in pristine airways. Stoltz et al. tackled both of these obstacles by producing genetically modified CF pigs and analyzing their airways from birth to 6 months of age. Their studies revealed a spontaneously arising human-like lung disease that developed over time and had the CF hallmarks: multibacterial infections, inflammation, and mucus buildup. Although the lungs of the newborn CF piglets were not yet inflamed, they were less likely to be sterile and less able to eliminate bacteria that had been introduced into their lungs, relative to wild-type animals. Together, these findings suggest that bacterial infiltration spurs the pattern of lung inflammation and pathogenesis associated with CF. Having a clearer conception of CF lung disease can help clinicians devise preventive treatments that can be initiated early in the lives of CF patients. Such interventions may let CF suffers live and breath more fully. Lung disease causes most of the morbidity and mortality in cystic fibrosis (CF). Understanding the pathogenesis of this disease has been hindered, however, by the lack of an animal model with characteristic features of CF. To overcome this problem, we recently generated pigs with mutated CFTR genes. We now report that, within months of birth, CF pigs spontaneously developed hallmark features of CF lung disease, including airway inflammation, remodeling, mucus accumulation, and infection. Their lungs contained multiple bacterial species, suggesting that the lungs of CF pigs have a host defense defect against a wide spectrum of bacteria. In humans, the temporal and causal relations between inflammation and infection have remained uncertain. To investigate these processes, we studied newborn pigs. Their lungs showed no inflammation but were less often sterile than controls. Moreover, after introduction of bacteria into their lungs, pigs with CF failed to eradicate bacteria as effectively as wild-type pigs. These results suggest that impaired bacterial elimination is the pathogenic event that initiates a cascade of inflammation and pathology in CF lungs. Our finding that pigs with CF have a host defense defect against bacteria within hours of birth provides an opportunity to further investigate CF pathogenesis and to test therapeutic and preventive strategies that could be deployed before secondary consequences develop.
Nature | 2003
Paola D. Vermeer; Lisa A. Einwalter; Thomas O. Moninger; Tatiana Rokhlina; Jeffrey A. Kern; Joseph Zabner; Michael J. Welsh
Interactions between ligands and receptors are central to communication between cells and tissues. Human airway epithelia constitutively produce both a ligand, the growth factor heregulin, and its receptors—erbB2, erbB3 and erbB4 (refs 1–3). Although heregulin binding initiates cellular proliferation and differentiation, airway epithelia have a low rate of cell division. This raises the question of how ligand–receptor interactions are controlled in epithelia. Here we show that in differentiated human airway epithelia, heregulin-α is present exclusively in the apical membrane and the overlying airway surface liquid, physically separated from erbB2–4, which segregate to the basolateral membrane. This physical arrangement creates a ligand–receptor pair poised for activation whenever epithelial integrity is disrupted. Indeed, immediately following a mechanical injury, heregulin-α activates erbB2 in cells at the edge of the wound, and this process hastens restoration of epithelial integrity. Likewise, when epithelial cells are not separated into apical and basolateral membranes (‘polarized’), or when tight junctions between adjacent cells are opened, heregulin-α activates its receptor. This mechanism of ligand–receptor segregation on either side of epithelial tight junctions may be vital for rapid restoration of integrity following injury, and hence critical for survival. This model also suggests a mechanism for abnormal receptor activation in diseases with increased epithelial permeability.
Journal of Clinical Investigation | 2008
Christopher S. Rogers; Yanhong Hao; Tatiana Rokhlina; Melissa Samuel; David A. Stoltz; Yuhong Li; Elena Petroff; Daniel W. Vermeer; Amanda C. Kabel; Ziying Yan; Lee D. Spate; David Wax; Clifton N. Murphy; August Rieke; Kristin M. Whitworth; Michael L. Linville; Scott W. Korte; John F. Engelhardt; Michael Welsh; Randall S. Prather
Progress toward understanding the pathogenesis of cystic fibrosis (CF) and developing effective therapies has been hampered by lack of a relevant animal model. CF mice fail to develop the lung and pancreatic disease that cause most of the morbidity and mortality in patients with CF. Pigs may be better animals than mice in which to model human genetic diseases because their anatomy, biochemistry, physiology, size, and genetics are more similar to those of humans. However, to date, gene-targeted mammalian models of human genetic disease have not been reported for any species other than mice. Here we describe the first steps toward the generation of a pig model of CF. We used recombinant adeno-associated virus (rAAV) vectors to deliver genetic constructs targeting the CF transmembrane conductance receptor (CFTR) gene to pig fetal fibroblasts. We generated cells with the CFTR gene either disrupted or containing the most common CF-associated mutation (DeltaF508). These cells were used as nuclear donors for somatic cell nuclear transfer to porcine oocytes. We thereby generated heterozygote male piglets with each mutation. These pigs should be of value in producing new models of CF. In addition, because gene-modified mice often fail to replicate human diseases, this approach could be used to generate models of other human genetic diseases in species other than mice.
Science Translational Medicine | 2011
Lynda S. Ostedgaard; David K. Meyerholz; Jeng Haur Chen; Alejandro A. Pezzulo; Philip H. Karp; Tatiana Rokhlina; Sarah E. Ernst; Robert A. Hanfland; Leah R. Reznikov; Paula S. Ludwig; Mark P. Rogan; Greg J. Davis; Cassie L. Dohrn; Christine L. Wohlford-Lenane; Peter J. Taft; Michael V. Rector; Emma E. Hornick; Boulos S. Nassar; Melissa Samuel; Yuping Zhang; Sandra S. Richter; Aliye Uc; Joel Shilyansky; Randall S. Prather; Paul B. McCray; Joseph Zabner; Michael J. Welsh; David A. Stoltz
A common mutation in human cystic fibrosis, CFTR-ΔF508, results in misprocessed CFTR and a cystic fibrosis–like clinical phenotype in pigs. Four Legs Good, Two Legs Bad In Animal Farm, George Orwell describes a pasture in which the pigs lead an animal revolt, resulting eventually in the porcine dwellers becoming indistinguishable from the human ones against whom they revolted. Scientists similarly wish for pigs to model humans, although as large animal models of human disease, not despotic rulers. Ostedgaard et al. extended this idea to cystic fibrosis (CF), generating pigs that carry the most common human CF mutation, Δ508. CF is a devastating genetic disease characterized by difficulty breathing, progressive disability, persistent infections, and, often, early death. CF is caused by a mutation in the gene that encodes the CF transmembrane conductance regulator (CFTR), which is an anion channel that modulates the components of sweat, digestive juices, and mucus. The most common mutation in CF patients results in an altered version of CFTR, CFTR-Δ508, which is found in 1 of 25 people of Caucasian descent. CF is difficult to study in human patients, and mouse models do not accurately reflect the human disease. Pigs may provide a better model of CF because they have more similar anatomy, biochemistry, physiology, size, and genetics to humans than mice. Thus, the authors generated a pig model of CF with the CFTR-Δ508 mutation. Similar to pigs that completely lack expression of CFTR, the CFTR-Δ508 pigs developed CF symptoms that mimicked those in human patients. In these animals, much of the CFTR-Δ508 protein was misprocessed; specifically, it was retained in the endoplasmic reticulum and rapidly degraded. However, pigs with CFTR-Δ508 retained small amounts of CFTR conductance (~6%), although this level of function was not sufficient to prevent disease. This new model may help to determine which levels of CFTR are sufficient for function and, therefore, guide future therapeutic strategies. After all, all animal models are equal, but some are more equal than others. Cystic fibrosis (CF) is an autosomal recessive disease caused by mutations in the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR) anion channel. The most common CF-associated mutation is ΔF508, which deletes a phenylalanine in position 508. In vitro studies indicate that the resultant protein, CFTR-ΔF508, is misprocessed, although the in vivo consequences of this mutation remain uncertain. To better understand the effects of the ΔF508 mutation in vivo, we produced CFTRΔF508/ΔF508 pigs. Our biochemical, immunocytochemical, and electrophysiological data on CFTR-ΔF508 in newborn pigs paralleled in vitro predictions. They also indicated that CFTRΔF508/ΔF508 airway epithelia retain a small residual CFTR conductance, with maximal stimulation producing ~6% of wild-type function. Cyclic adenosine 3′,5′-monophosphate (cAMP) agonists were less potent at stimulating current in CFTRΔF508/ΔF508 epithelia, suggesting that quantitative tests of maximal anion current may overestimate transport under physiological conditions. Despite residual CFTR function, four older CFTRΔF508/ΔF508 pigs developed lung disease similar to human CF. These results suggest that this limited CFTR activity is insufficient to prevent lung or gastrointestinal disease in CF pigs. These data also suggest that studies of recombinant CFTR-ΔF508 misprocessing predict in vivo behavior, which validates its use in biochemical and drug discovery experiments. These findings help elucidate the molecular pathogenesis of the common CF mutation and will guide strategies for developing new therapeutics.
Proceedings of the National Academy of Sciences of the United States of America | 2007
Lynda S. Ostedgaard; Christopher S. Rogers; Qian Dong; Christoph O. Randak; Daniel W. Vermeer; Tatiana Rokhlina; Philip H. Karp; Michael Welsh
Mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) cause cystic fibrosis. The most common mutation, a deletion of the phenylalanine at position 508 (ΔF508), disrupts processing of the protein. Nearly all human CFTR-ΔF508 is retained in the endoplasmic reticulum and degraded, preventing maturation to the plasma membrane. In addition, the F508 deletion reduces the activity of single CFTR channels. Human CFTR-ΔF508 has been extensively studied to better understand its defects. Here, we adopted a cross-species comparative approach, examining human, pig, and mouse CFTR-ΔF508. As with human CFTR-ΔF508, the ΔF508 mutation reduced the single-channel activity of the pig and mouse channels. However, the mutant pig and mouse proteins were at least partially processed like their wild-type counterparts. Moreover, pig and mouse CFTR-ΔF508 partially restored transepithelial Cl− transport to CF airway epithelia. Our data, combined with earlier work, suggest that there is a gradient in the severity of the CFTR-ΔF508 processing defect, with human more severe than pig or mouse. These findings may explain some previously puzzling observations in CF mice, they have important implications for evaluation of potential therapeutics, and they suggest new strategies for discovering the mechanisms that disrupt processing of human CFTR-ΔF508.
Journal of Clinical Investigation | 2013
David A. Stoltz; Tatiana Rokhlina; Sarah E. Ernst; Alejandro A. Pezzulo; Lynda S. Ostedgaard; Philip H. Karp; Melissa Samuel; Leah R. Reznikov; Michael V. Rector; Nicholas D. Gansemer; Drake C. Bouzek; Mahmoud H. Abou Alaiwa; Mark J. Hoegger; Paula S. Ludwig; Peter J. Taft; Tanner J Wallen; Christine L. Wohlford-Lenane; James D. McMenimen; Jeng-Haur Chen; Katrina L. Bogan; Ryan J. Adam; Emma E. Hornick; George A. Nelson; Eric A. Hoffman; Eugene H. Chang; Joseph Zabner; Paul B. McCray; Randall S. Prather; David K. Meyerholz; Michael J. Welsh
Cystic fibrosis (CF) pigs develop disease with features remarkably similar to those in people with CF, including exocrine pancreatic destruction, focal biliary cirrhosis, micro-gallbladder, vas deferens loss, airway disease, and meconium ileus. Whereas meconium ileus occurs in 15% of babies with CF, the penetrance is 100% in newborn CF pigs. We hypothesized that transgenic expression of porcine CF transmembrane conductance regulator (pCFTR) cDNA under control of the intestinal fatty acid-binding protein (iFABP) promoter would alleviate the meconium ileus. We produced 5 CFTR-/-;TgFABP>pCFTR lines. In 3 lines, intestinal expression of CFTR at least partially restored CFTR-mediated anion transport and improved the intestinal phenotype. In contrast, these pigs still had pancreatic destruction, liver disease, and reduced weight gain, and within weeks of birth, they developed sinus and lung disease, the severity of which varied over time. These data indicate that expressing CFTR in intestine without pancreatic or hepatic correction is sufficient to rescue meconium ileus. Comparing CFTR expression in different lines revealed that approximately 20% of wild-type CFTR mRNA largely prevented meconium ileus. This model may be of value for understanding CF pathophysiology and testing new preventions and therapies.
Proceedings of the National Academy of Sciences of the United States of America | 2003
Lynda S. Ostedgaard; Christoph O. Randak; Tatiana Rokhlina; Philip H. Karp; Daniel W. Vermeer; Katherine J. D. A. Excoffon; Michael Welsh
To better understand the function of the conserved C terminus of the cystic fibrosis (CF) transmembrane conductance regulator, we studied constructs containing deletions in the C-terminal tail. When expressed in well differentiated CF airway epithelia, each construct localized predominantly to the apical membrane and generated transepithelial Cl− current. The results suggested that neither the C-terminal PSD-95/Discs-large/ZO-1 (PDZ)-interacting motif nor other C-terminal sequences were absolutely required for apical expression in airway epithelia. Surprisingly, deleting an acidic cluster near the C terminus reduced both channel opening rate and transepithelial Cl− transport, indicating that it influences channel gating. These results may help explain the relative paucity of CF-associated mutations in the C terminus.
Proceedings of the National Academy of Sciences of the United States of America | 2002
Lynda S. Ostedgaard; Joseph Zabner; Daniel W. Vermeer; Tatiana Rokhlina; Philip H. Karp; Arlene A. Stecenko; Christoph O. Randak; Michael Welsh
In developing gene therapy for cystic fibrosis (CF) airways disease, a transgene encoding a partially deleted CF transmembrane conductance regulator (CFTR) Cl− channel could be of value for vectors such as adeno-associated virus that have a limited packaging capacity. Earlier studies in heterologous cells indicated that the CFTR R (regulatory) domain is predominantly random coil and that parts of the R domain can be deleted without abolishing channel function. Therefore, we designed a series of CFTR variants with shortened R domains (between residues 708 and 835) and expressed them in well-differentiated cultures of CF airway epithelia. All of the variants showed normal targeting to the apical membrane, and for the constructs we tested, biosynthesis was like wild type. Moreover, all constructs generated transepithelial Cl− current in CF epithelia. Comparison of the Cl− transport suggested that the length of the R domain, the presence of phosphorylation sites, and other factors contribute to channel activity. A variant deleting residues 708–759 complemented CF airway epithelia to the same extent as wild-type CFTR and showed no current in the absence of cAMP stimulation. In addition, expression in nasal mucosa of CF mice corrected the Cl− transport defect. These data provide insight into the structure and function of the R domain and identify regions that can be deleted with retention of function. Thus they suggest a strategy for shortening the transgene used in CF gene therapy.
Journal of Virology | 2007
Paola D. Vermeer; Julia McHugh; Tatiana Rokhlina; Daniel W. Vermeer; Joseph Zabner; Michael J. Welsh
ABSTRACT Variola virus, the causative agent of smallpox, enters and exits the host via the respiratory route. To better understand the pathogenesis of poxvirus infection and its interaction with respiratory epithelia, we used vaccinia virus and examined its interaction with primary cultures of well-differentiated human airway epithelia. We found that vaccinia virus preferentially infected the epithelia through the basolateral membrane and released viral progeny across the apical membrane. Despite infection and virus production, epithelia retained tight junctions, transepithelial electrical conductance, and a steep transepithelial concentration gradient of virus, indicating integrity of the epithelial barrier. In fact, during the first four days of infection, epithelial height and cell number increased. These morphological changes and maintenance of epithelial integrity required vaccinia virus growth factor, which was released basolaterally, where it activated epidermal growth factor 1 receptors. These data suggest a complex interaction between the virus and differentiated airway epithelia; the virus preferentially enters the cells basolaterally, exits apically, and maintains epithelial integrity by stimulating growth factor receptors.