Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lyndon J. Mitnaul is active.

Publication


Featured researches published by Lyndon J. Mitnaul.


Journal of Lipid Research | 2011

A PCSK9-binding antibody that structurally mimics the EGF(A) domain of LDL-receptor reduces LDL cholesterol in vivo

Yan G. Ni; Di Marco S; Jon H. Condra; Laurence B. Peterson; Weirong Wang; Fubao Wang; Shilpa Pandit; Holly A. Hammond; Ray Rosa; Cummings Rt; Dana D Wood; Xiaomei Liu; Bottomley Mj; Xun Shen; Cubbon Rm; Wang Sp; Douglas G. Johns; Volpari C; Hamuro L; Jayne Chin; Lingyi Huang; Jing Zhang Zhao; Salvatore Vitelli; Peter Haytko; Douglas Wisniewski; Lyndon J. Mitnaul; Carl P. Sparrow; Brian K. Hubbard; Andrea Carfi; Ayesha Sitlani

Proprotein convertase subtilisin-like/kexin type 9 (PCSK9) regulates LDL cholesterol levels by inhibiting LDL receptor (LDLr)-mediated cellular LDL uptake. We have identified a fragment antigen-binding (Fab) 1D05 which binds PCSK9 with nanomolar affinity. The fully human antibody 1D05-IgG2 completely blocks the inhibitory effects of wild-type PCSK9 and two gain-of-function human PCSK9 mutants, S127R and D374Y. The crystal structure of 1D05-Fab bound to PCSK9 reveals that 1D05-Fab binds to an epitope on the PCSK9 catalytic domain which includes the entire LDLr EGF(A) binding site. Notably, the 1D05-Fab CDR-H3 and CDR-H2 loops structurally mimic the EGF(A) domain of LDLr. In a transgenic mouse model (CETP/LDLr-hemi), in which plasma lipid and PCSK9 profiles are comparable to those of humans, 1D05-IgG2 reduces plasma LDL cholesterol to 40% and raises hepatic LDLr protein levels approximately fivefold. Similarly, in healthy rhesus monkeys, 1D05-IgG2 effectively reduced LDL cholesterol 20%–50% for over 2 weeks, despite its relatively short terminal half-life (t1/2 = 3.2 days). Importantly, the decrease in circulating LDL cholesterol corresponds closely to the reduction in free PCSK9 levels. Together these results clearly demonstrate that the LDL-lowering effect of the neutralizing anti-PCSK9 1D05-IgG2 antibody is mediated by reducing the amount of PCSK9 that can bind to the LDLr.


Journal of Lipid Research | 2012

Plasma lipid profiling across species for the identification of optimal animal models of human dyslipidemia.

Wu Yin; Ester Carballo-Jane; David G. McLaren; Vivienne Mendoza; Karen Gagen; Neil S. Geoghagen; Judith N. Gorski; George J. Eiermann; Aleksandr Petrov; Michael Wolff; Xinchun Tong; Larissa Wilsie; Taro E. Akiyama; Jing Chen; Anil Thankappan; Jiyan Xue; Xiaoli Ping; Genevieve Andrews; L. Alexandra Wickham; Cesaire L. Gai; Tu Trinh; Alison Kulick; Marcie J. Donnelly; Gregory O. Voronin; Ray Rosa; Anne-Marie Cumiskey; Kavitha Bekkari; Lyndon J. Mitnaul; Oscar Puig; Fabian Chen

In an attempt to understand the applicability of various animal models to dyslipidemia in humans and to identify improved preclinical models for target discovery and validation for dyslipidemia, we measured comprehensive plasma lipid profiles in 24 models. These included five mouse strains, six other nonprimate species, and four nonhuman primate (NHP) species, and both healthy animals and animals with metabolic disorders. Dyslipidemic humans were assessed by the same measures. Plasma lipoprotein profiles, eight major plasma lipid fractions, and FA compositions within these lipid fractions were compared both qualitatively and quantitatively across the species. Given the importance of statins in decreasing plasma low-density lipoprotein cholesterol for treatment of dyslipidemia in humans, the responses of these measures to simvastatin treatment were also assessed for each species and compared with dyslipidemic humans. NHPs, followed by dog, were the models that demonstrated closest overall match to dyslipidemic humans. For the subset of the dyslipidemic population with high plasma triglyceride levels, the data also pointed to hamster and db/db mouse as representative models for practical use in target validation. Most traditional models, including rabbit, Zucker diabetic fatty rat, and the majority of mouse models, did not demonstrate overall similarity to dyslipidemic humans in this study.


Journal of the American Society for Mass Spectrometry | 2011

Localization of Fatty Acyl and Double Bond Positions in Phosphatidylcholines Using a Dual Stage CID Fragmentation Coupled with Ion Mobility Mass Spectrometry

Jose Castro-Perez; Thomas P. Roddy; Nico M. M. Nibbering; Vinit Shah; David G. McLaren; Stephen F. Previs; Kithsiri Herath; Zhu Chen; Sheng-Ping Wang; Lyndon J. Mitnaul; Brian K. Hubbard; Rob J. Vreeken; Douglas G. Johns; Thomas Hankemeier

A high content molecular fragmentation for the analysis of phosphatidylcholines (PC) was achieved utilizing a two-stage [trap (first generation fragmentation) and transfer (second generation fragmentation)] collision-induced dissociation (CID) in combination with travelling-wave ion mobility spectrometry (TWIMS). The novel aspects of this work reside in the fact that a TWIMS arrangement was used to obtain a high level structural information including location of fatty acyl substituents and double bonds for PCs in plasma, and the presence of alkali metal adduct ions such as [M + Li]+ was not required to obtain double bond positions. Elemental compositions for fragment ions were confirmed by accurate mass measurements. A very specific first generation fragment ion m/z 577 (M-phosphoryl choline) from the PC [16:0/18:1 (9Z)] was produced, which by further CID generated acylium ions containing either the fatty acyl 16:0 (C15H31CO+, m/z 239) or 18:1 (9Z) (C17H33CO+, m/z 265) substituent. Subsequent water loss from these acylium ions was key in producing hydrocarbon fragment ions mainly from the α-proximal position of the carbonyl group such as the hydrocarbon ion m/z 67 (+H2C-HC = CH-CH = CH2). Formation of these ions was of important significance for determining double bonds in the fatty acyl chains. In addition to this, and with the aid of 13C labeled lyso-phosphatidylcholine (LPC) 18:1 (9Z) in the ω-position (methyl) TAP fragmentation produced the ion at m/z 57. And was proven to be derived from the α-proximal (carboxylate) or distant ω-position (methyl) in the LPC.


International Journal of Biological Sciences | 2012

An Anti-PCSK9 Antibody Reduces LDL-Cholesterol On Top Of A Statin And Suppresses Hepatocyte SREBP-Regulated Genes

Liwen Zhang; Timothy Mccabe; Jon H. Condra; Yan G. Ni; Laurence B. Peterson; Weirong Wang; Alison M. Strack; Fubao Wang; Shilpa Pandit; Holly A. Hammond; Dana D Wood; Dale Lewis; Ray Rosa; Vivienne Mendoza; Anne Marie Cumiskey; Douglas G. Johns; Barbara C. Hansen; Xun Shen; Neil S. Geoghagen; Kristian K. Jensen; Lei Zhu; Karol Wietecha; Douglas Wisniewski; Lingyi Huang; Jing Zhang Zhao; Robin Ernst; Richard Hampton; Peter Haytko; Frances Ansbro; Shannon Chilewski

Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a promising therapeutic target for treating coronary heart disease. We report a novel antibody 1B20 that binds to PCSK9 with sub-nanomolar affinity and antagonizes PCSK9 function in-vitro. In CETP/LDLR-hemi mice two successive doses of 1B20, administered 14 days apart at 3 or 10 mpk, induced dose dependent reductions in LDL-cholesterol (≥ 25% for 7-14 days) that correlated well with the extent of PCSK9 occupancy by the antibody. In addition, 1B20 induces increases in total plasma antibody-bound PCSK9 levels and decreases in liver mRNA levels of SREBP-regulated genes PCSK9 and LDLR, with a time course that parallels decreases in plasma LDL-cholesterol (LDL-C). Consistent with this observation in mice, in statin-responsive human primary hepatocytes, 1B20 lowers PCSK9 and LDLR mRNA levels and raises serum steady-state levels of antibody-bound PCSK9. In addition, mRNA levels of several SREBP regulated genes involved in cholesterol and fatty-acid synthesis including ACSS2, FDPS, IDI1, MVD, HMGCR, and CYP51A1 were decreased significantly with antibody treatment of primary human hepatocytes. In rhesus monkeys, subcutaneous (SC) dosing of 1B20 dose-dependently induces robust LDL-C lowering (maximal ~70%), which is correlated with increases in target engagement and total antibody-bound PCSK9 levels. Importantly, a combination of 1B20 and Simvastatin in dyslipidemic rhesus monkeys reduced LDL-C more than either agent alone, consistent with a mechanism of action that predicts additive effects of anti-PCSK9 agents with statins. Our results suggest that antibodies targeting PCSK9 could provide patients powerful LDL lowering efficacy on top of statins, and lower cardiovascular risk.


Genome Research | 2009

Integrating siRNA and protein–protein interaction data to identify an expanded insulin signaling network

Zhidong Tu; Carmen A. Argmann; Kenny K. Wong; Lyndon J. Mitnaul; Stephen Edwards; Iliana C. Sach; Jun Zhu; Eric E. Schadt

Insulin resistance is one of the dominant symptoms of type 2 diabetes (T2D). Although the molecular mechanisms leading to this resistance are largely unknown, experimental data support that the insulin signaling pathway is impaired in patients who are insulin resistant. To identify novel components/modulators of the insulin signaling pathway, we designed siRNAs targeting over 300 genes and tested the effects of knocking down these genes in an insulin-dependent, anti-lipolysis assay in 3T3-L1 adipocytes. For 126 genes, significant changes in free fatty acid release were observed. However, due to off-target effects (in addition to other limitations), high-throughput RNAi-based screens in cell-based systems generate significant amounts of noise. Therefore, to obtain a more reliable set of genes from the siRNA hits in our screen, we developed and applied a novel network-based approach that elucidates the mechanisms of action for the true positive siRNA hits. Our analysis results in the identification of a core network underlying the insulin signaling pathway that is more significantly enriched for genes previously associated with insulin resistance than the set of genes annotated in the KEGG database as belonging to the insulin signaling pathway. We experimentally validated one of the predictions, S1pr2, as a novel candidate gene for T2D.


Journal of Lipid Research | 2011

siRNA-induced liver ApoB knockdown lowers serum LDL-cholesterol in a mouse model with human-like serum lipids

Marija Tadin-Strapps; Laurence B. Peterson; Anne-Marie Cumiskey; Ray Rosa; Vivienne Mendoza; Jose Castro-Perez; Oscar Puig; Liwen Zhang; Walter Strapps; Satyasri Yendluri; Lori Andrews; Victoria Pickering; Julie Rice; Lily Luo; Zhu Chen; Samnang Tep; Brandon Ason; Elizabeth Polizzi Somers; Alan B. Sachs; Steven R. Bartz; Jenny Tian; Jayne Chin; Brian K. Hubbard; Kenny K. Wong; Lyndon J. Mitnaul

Increased serum apolipoprotein (apo)B and associated LDL levels are well-correlated with an increased risk of coronary disease. ApoE–/– and low density lipoprotein receptor (LDLr)–/– mice have been extensively used for studies of coronary atherosclerosis. These animals show atherosclerotic lesions similar to those in humans, but their serum lipids are low in apoB-containing LDL particles. We describe the development of a new mouse model with a human-like lipid profile. Ldlr CETP+/– hemizygous mice carry a single copy of the human CETP transgene and a single copy of a LDL receptor mutation. To evaluate the apoB pathways in this mouse model, we used novel short-interfering RNAs (siRNA) formulated in lipid nanoparticles (LNP). ApoB siRNAs induced up to 95% reduction of liver ApoB mRNA and serum apoB protein, and a significant lowering of serum LDL in Ldlr CETP+/– mice. ApoB targeting is specific and dose-dependent, and it shows lipid-lowering effects for over three weeks. Although specific triglycerides (TG) were affected by ApoB mRNA knockdown (KD) and the total plasma lipid levels were decreased by 70%, the overall lipid distribution did not change. Results presented here demonstrate a new mouse model for investigating additional targets within the ApoB pathways using the siRNA modality.


Journal of Biomolecular Screening | 2008

Integrating Experimental and Analytic Approaches to Improve Data Quality in Genome-wide RNAi Screens

Xiaohua Douglas Zhang; Amy S. Espeseth; Eric N. Johnson; Jayne Chin; Adam T. Gates; Lyndon J. Mitnaul; Shane Marine; Jenny Tian; Eric M. Stec; Priya Kunapuli; Dan Holder; Joseph F. Heyse; Berta Strulovici; Marc Ferrer

RNA interference (RNAi) not only plays an important role in drug discovery but can also be developed directly into drugs. RNAi high-throughput screening (HTS) biotechnology allows us to conduct genome-wide RNAi research. A central challenge in genome-wide RNAi research is to integrate both experimental and computational approaches to obtain high quality RNAi HTS assays. Based on our daily practice in RNAi HTS experiments, we propose the implementation of 3 experimental and analytic processes to improve the quality of data from RNAi HTS biotechnology: (1) select effective biological controls; (2) adopt appropriate plate designs to display and/or adjust for systematic errors of measurement; and (3) use effective analytic metrics to assess data quality. The applications in 5 real RNAi HTS experiments demonstrate the effectiveness of integrating these processes to improve data quality. Due to the effectiveness in improving data quality in RNAi HTS experiments, the methods and guidelines contained in the 3 experimental and analytic processes are likely to have broad utility in genome-wide RNAi research. (Journal of Biomolecular Screening 2008:378-389)


Journal of Lipid Research | 2011

In vivo D2O labeling to quantify static and dynamic changes in cholesterol and cholesterol esters by high resolution LC/MS.

Jose Castro-Perez; Stephen F. Previs; David G. McLaren; Vinit Shah; Kithsiri Herath; Gowri Bhat; Douglas G. Johns; Sheng-Ping Wang; Lyndon J. Mitnaul; Kristian K. Jensen; R. Vreeken; Thomas Hankemeier; Thomas P. Roddy; Brian K. Hubbard

High resolution LC/MS-MS and LC/APPI-MS methods have been established for the quantitation of flux in the turnover of cholesterol and cholesterol ester. Attention was directed toward quantifying the monoisotopic mass (M0) and that of the singly deuterated labeled (M+1) isotope. A good degree of isotopic dynamic range has been achieved by LC/MS-MS ranging from 3-4 orders of magnitude. Correlation between the linearity of GC/MS and LC atmospheric pressure photoionization (APPI)-MS are complimentary (r2 = 0.9409). To prove the viability of this particular approach, male C57Bl/6 mice on either a high carbohydrate (HC) or a high fat (HF) diet were treated with 2H2O for 96 h. Gene expression analysis showed an increase in the activity of stearoyl-CoA desaturase (Scd1) in the HC diet up to 69-fold (P < 0.0008) compared with the HF diet. This result was supported by the quantitative flux measurement of the isotopic incorporation of 2H into the respective cholesterol and cholesterol ester (CE) pools. We concluded that it is possible to readily obtain static and dynamic measurement of cholesterol and CEs in vivo by coupling novel LC/MS methods with stable isotope-based protocols.


Assay and Drug Development Technologies | 2003

A β-Lactamase-Dependent Gal4-Estrogen Receptor β Transactivation Assay for the Ultra-High Throughput Screening of Estrogen Receptor β Agonists in a 3,456-Well Format

Norbert T. Peekhaus; Marc Ferrer; Tina Chang; Oleg Kornienko; Jonathan Schneeweis; Todd Smith; Ira Hoffman; Lyndon J. Mitnaul; Jayne Chin; Paul Fischer; Tim A. Blizzard; Elizabeth T. Birzin; Wanda Chan; James Inglese; Berta Strulovici; Susan P. Rohrer; James M. Schaeffer

Estrogen action is mediated via two estrogen receptor (ER) subtypes, ERα and ERβ. Selective ER modulators with balanced high affinity for ERα and ERβ have been developed as therapeutics for the tre...


Assay and Drug Development Technologies | 2003

Miniaturization of Cell-Based β-Lactamase-Dependent FRET Assays to Ultra-High Throughput Formats to Identify Agonists of Human Liver X Receptors

Jayne Chin; Alan D. Adams; Aileen Bouffard; Ahren I. Green; Raul Lacson; Todd Smith; Paul Fischer; John G. Menke; Carl P. Sparrow; Lyndon J. Mitnaul

Activation of liver X receptors (LXRs) induces reverse cholesterol transport and increases high-density lipoprotein cholesterol in vivo. Here, we describe novel, functional, homogeneous cell-based fluorescence resonance energy transfer assays for identifying agonists of LXRs using beta-lactamase as the reporter gene. Stable Chinese hamster ovary cell lines expressing LXRalpha-GAL4 or LXRbeta-GAL4 fusion proteins that regulate beta-lactamase transcription from upstream 7 x UAS GAL4 DNA binding sequences were generated and characterized. Synthetic and natural ligands of LXR dose-dependently activated the expression of beta-lactamase in a subtype-specific manner. These assays were used to demonstrate that a 1-pyridyl hydantoin small molecule LXR synthetic ligand specifically activates LXRalpha receptors. The beta-lactamase assays were optimized for cell density, dimethyl sulfoxide sensitivity, and time of agonist stimulation. Clonal LXRbeta-GAL4-beta-lactamase cells were miniaturized into an ultra high throughput (3456-well nanoplates) screening format.

Collaboration


Dive into the Lyndon J. Mitnaul's collaboration.

Researchain Logo
Decentralizing Knowledge