Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lynley V. Marshall is active.

Publication


Featured researches published by Lynley V. Marshall.


Cancer Research | 2010

MGMT-Independent Temozolomide Resistance in Pediatric Glioblastoma Cells Associated with a PI3-Kinase–Mediated HOX/Stem Cell Gene Signature

Nathalie Gaspar; Lynley V. Marshall; Lara Perryman; Suzanne E. Little; Marta Viana-Pereira; Swee Y. Sharp; Gilles Vassal; Andrew D.J. Pearson; Rui M. Reis; Darren Hargrave; Paul Workman; Chris Jones

Sensitivity to temozolomide is restricted to a subset of glioblastoma patients, with the major determinant of resistance being a lack of promoter methylation of the gene encoding the repair protein DNA methyltransferase MGMT, although other mechanisms are thought to be active. There are, however, limited preclinical data in model systems derived from pediatric glioma patients. We screened a series of cell lines for temozolomide efficacy in vitro, and investigated the differential mechanisms of resistance involved. In the majority of cell lines, a lack of MGMT promoter methylation and subsequent protein overexpression were linked to temozolomide resistance. An exception was the pediatric glioblastoma line KNS42. Expression profiling data revealed a coordinated upregulation of HOX gene expression in resistant lines, especially KNS42, which was reversed by phosphoinositide 3-kinase pathway inhibition. High levels of HOXA9/HOXA10 gene expression were associated with a shorter survival in pediatric high-grade glioma patient samples. Combination treatment in vitro of pathway inhibition and temozolomide resulted in a highly synergistic interaction in KNS42 cells. The resistance gene signature further included contiguous genes within the 12q13-q14 amplicon, including the Akt enhancer PIKE, significantly overexpressed in the KNS42 line. These cells were also highly enriched for CD133 and other stem cell markers. We have thus shown an in vitro link between phosphoinositide 3-kinase-mediated HOXA9/HOXA10 expression, and a drug-resistant, progenitor cell phenotype in MGMT-independent pediatric glioblastoma.


PLOS ONE | 2009

Molecular and Phenotypic Characterisation of Paediatric Glioma Cell Lines as Models for Preclinical Drug Development

Suzanne E. Little; Nathalie Gaspar; Lara Perryman; Lynley V. Marshall; Marta Viana-Pereira; Tania A. Jones; Richard Williams; Anita Grigoriadis; Gilles Vassal; Paul Workman; Denise Sheer; Rui M. Reis; Andrew D.J. Pearson; Darren Hargrave; Chris Jones

Background Although paediatric high grade gliomas resemble their adult counterparts in many ways, there appear to be distinct clinical and biological differences. One important factor hampering the development of new targeted therapies is the relative lack of cell lines derived from childhood glioma patients, as it is unclear whether the well-established adult lines commonly used are representative of the underlying molecular genetics of childhood tumours. We have carried out a detailed molecular and phenotypic characterisation of a series of paediatric high grade glioma cell lines in comparison to routinely used adult lines. Principal Findings All lines proliferate as adherent monolayers and express glial markers. Copy number profiling revealed complex genomes including amplification and deletions of genes known to be pivotal in core glioblastoma signalling pathways. Expression profiling identified 93 differentially expressed genes which were able to distinguish between the adult and paediatric high grade cell lines, including a number of kinases and co-ordinated sets of genes associated with DNA integrity and the immune response. Significance These data demonstrate that glioma cell lines derived from paediatric patients show key molecular differences to those from adults, some of which are well known, whilst others may provide novel targets for evaluation in primary tumours. We thus provide the rationale and demonstrate the practicability of using paediatric glioma cell lines for preclinical and mechanistic studies.


Clinical Cancer Research | 2009

EGFRvIII Deletion Mutations in Pediatric High-Grade Glioma and Response to Targeted Therapy in Pediatric Glioma Cell Lines

Nathalie Gaspar; Suzanne E. Little; Lynley V. Marshall; Lara Perryman; Marie Regairaz; Marta Viana-Pereira; Raisa Vuononvirta; Swee Y. Sharp; Jorge S. Reis-Filho; João Norberto Stávale; Safa Al-Sarraj; Rui M. Reis; Gilles Vassal; Andrew D.J. Pearson; Darren Hargrave; David W. Ellison; Paul Workman; Chris Jones

Purpose: The epidermal growth factor receptor (EGFR) is amplified and overexpressed in adult glioblastoma, with response to targeted inhibition dependent on the underlying biology of the disease. EGFR has thus far been considered to play a less important role in pediatric glioma, although extensive data are lacking. We have sought to clarify the role of EGFR in pediatric high-grade glioma (HGG). Experimental Design: We retrospectively studied a total of 90 archival pediatric HGG specimens for EGFR protein overexpression, gene amplification, and mutation and assessed the in vitro sensitivity of pediatric glioma cell line models to the small-molecule EGFR inhibitor erlotinib. Results: Amplification was detected in 11% of cases, with corresponding overexpression of the receptor. No kinase or extracellular domain mutations were observed; however, 6 of 35 (17%) cases harbored the EGFRvIII deletion, including two anaplastic oligodendrogliomas and a gliosarcoma overexpressing EGFRvIII in the absence of gene amplification and coexpressing platelet-derived growth factor receptor α. Pediatric glioblastoma cells transduced with wild-type or deletion mutant EGFRvIII were not rendered more sensitive to erlotinib despite expressing wild-type PTEN. Phosphorylated receptor tyrosine kinase profiling showed a specific activation of platelet-derived growth factor receptor α/β in EGFRvIII-transduced pediatric glioblastoma cells, and targeted coinhibition with erlotinib and imatinib leads to enhanced efficacy in this model. Conclusions: These data identify an elevated frequency of EGFR gene amplification and EGFRvIII mutation in pediatric HGG than previously recognized and show the likely necessity of targeting multiple genetic alterations in the tumors of these children. (Clin Cancer Res 2009;15(18):5753–61)


Pediatric Blood & Cancer | 2008

Defibrotide in the prevention and treatment of veno-occlusive disease in autologous and allogeneic stem cell transplantation in children

Amrana Qureshi; Lynley V. Marshall; Donna Lancaster

Hepatic veno‐occlusive disease (VOD) is a common (10–50%) and serious complication of haematological stem cell transplantation (HSCT), with up to 90% mortality rates. We carried out a study to assess whether the use of prophylactic defibrotide in paediatric patients undergoing HSCT results in a lower frequency or severity of hepatic VOD.


Cancer Cell | 2017

Integrated Molecular Meta-Analysis of 1,000 Pediatric High-Grade and Diffuse Intrinsic Pontine Glioma

Alan Mackay; Anna Burford; Diana Carvalho; Elisa Izquierdo; Janat Fazal-Salom; Kathryn R. Taylor; Lynn Bjerke; Matthew Clarke; Mara Vinci; Meera Nandhabalan; Sara Temelso; Sergey Popov; Valeria Molinari; Pichai Raman; Angela J. Waanders; Harry J. Han; Saumya Gupta; Lynley V. Marshall; Stergios Zacharoulis; Sucheta Vaidya; Henry Mandeville; Leslie R. Bridges; Andrew J. Martin; Safa Al-Sarraj; Christopher Chandler; Ho Keung Ng; Xingang Li; Kun Mu; Saoussen Trabelsi; Dorra H’mida-Ben Brahim

Summary We collated data from 157 unpublished cases of pediatric high-grade glioma and diffuse intrinsic pontine glioma and 20 publicly available datasets in an integrated analysis of >1,000 cases. We identified co-segregating mutations in histone-mutant subgroups including loss of FBXW7 in H3.3G34R/V, TOP3A rearrangements in H3.3K27M, and BCOR mutations in H3.1K27M. Histone wild-type subgroups are refined by the presence of key oncogenic events or methylation profiles more closely resembling lower-grade tumors. Genomic aberrations increase with age, highlighting the infant population as biologically and clinically distinct. Uncommon pathway dysregulation is seen in small subsets of tumors, further defining the molecular diversity of the disease, opening up avenues for biological study and providing a basis for functionally defined future treatment stratification.


Clinical Cancer Research | 2015

A Phase I Trial of AT9283 (a Selective Inhibitor of Aurora Kinases) in Children and Adolescents with Solid Tumors: A Cancer Research UK Study

Lucas Moreno; Lynley V. Marshall; Adj Pearson; Bruce Morland; Martin Elliott; Q Campbell-Hewson; Guy Makin; Ser Halford; Gary Acton; P Ross; S Kazmi-Stokes; A Rodriguez; John Lyons; Alan V. Boddy; Melanie J. Griffin; Murray Yule; Darren Hargrave

Purpose: A phase I trial of AT9283 (a multitargeted inhibitor of Aurora kinases A and B) was conducted in children and adolescents with solid tumors, to identify maximum-tolerated dose (MTD), safety, efficacy, pharmacokinetics, and pharmacodynamic (PD) activity. Experimental Design: AT9283 was administered as a 72-hour continuous intravenous infusion every 3 weeks. A rolling-six design, explored six dose levels (7, 9, 11.5, 14.5, 18.5, and 23 mg/m2/d). Pharmacokinetic and PD assessments, included inhibition of phospho-histone 3 (pHH3) in paired skin punch biopsies. Results: Thirty-three patients were evaluable for toxicity. There were six dose-limiting toxicities and the MTD was 18.5 mg/m2/d. Most common drug-related toxicities were hematologic (neutropenia, anemia, and thrombocytopenia in 36.4%, 18.2%, and 21.2% of patients), which were grade ≥3 in 30.3%, 6.1%, and 3% of patients. Nonhematologic toxicities included fatigue, infections, febrile neutropenia and ALT elevation. One patient with central nervous system–primitive neuroectodermal tumor (CNS-PNET) achieved a partial response after 16 cycles and 3 cases were stable for four or more cycles. Plasma concentrations were comparable with those in adults at the same dose level, clearance was similar although half-life was shorter (4.9 ± 1.5 hours, compared with 8.4 ± 3.7 hours in adults). Inhibition of Aurora kinase B was shown by reduction in pHH3 in 17 of 18 patients treated at ≥11.5 mg/m2/d. Conclusion: AT9283 was well tolerated in children and adolescents with solid tumors with manageable hematologic toxicity. Target inhibition was demonstrated. Disease stabilization was documented in intracranial and extracranial pediatric solid tumors and a phase II dose determined. Clin Cancer Res; 21(2); 267–73. ©2014 AACR.


Journal of Pediatric Hematology Oncology | 2014

Toxicity and Outcome of Children and Adolescents Participating in Phase I/II Trials of Novel Anticancer Drugs: The Royal Marsden Experience

Daniel A. Morgenstern; Darren Hargrave; Lynley V. Marshall; Susanne A. Gatz; Giuseppe Barone; Tracey Crowe; Kathy Pritchard-Jones; Stergios Zacharoulis; Donna Lancaster; Sucheta Vaidya; Julia Chisholm; Andrew D.J. Pearson; Lucas Moreno

Early phase trials are crucial in developing new therapies for poor prognosis childhood malignancies. Outcomes and toxicities of children treated on phase I/II trials at the Royal Marsden, one of the largest pediatric oncology early phase trial units in Europe, were examined to provide a baseline dataset and generate hypotheses. All patients recruited over a 10-year period to December 2011 were included. Variables including baseline characteristics, time on study, survival, toxicities, and admissions were collected. Seventy-two patients were recruited to 21 trials (5 phase I, 16 phase II; overall 12 involved molecularly targeted agents). Median age at consent was 12.4 years. Dose-limiting toxicities were rare in phase I trial participants (2 of 15 evaluable patients, 13%); the most common reason for leaving trials was disease progression (76%), rather than drug toxicity (1.7%). Median time on trial was 1.3 months (phase I patients) and 3.3 months (phase II). Early phase trials in children are safe and unexpected toxic side effects are infrequent. Patients and their families are willing to travel to access novel therapies, although the overall prognosis for these individuals is poor. Continued expansion of the portfolio is needed ultimately to improve the outcomes for those with resistant disease.


PLOS ONE | 2014

Lactate and Choline Metabolites Detected In Vitro by Nuclear Magnetic Resonance Spectroscopy Are Potential Metabolic Biomarkers for PI3K Inhibition in Pediatric Glioblastoma

Nada M.S. Al-Saffar; Lynley V. Marshall; L. Elizabeth Jackson; Geetha Balarajah; Thomas R. Eykyn; Alice Agliano; Paul A. Clarke; Chris Jones; Paul Workman; Andrew D.J. Pearson; Martin O. Leach

The phosphoinositide 3-kinase (PI3K) pathway is believed to be of key importance in pediatric glioblastoma. Novel inhibitors of the PI3K pathway are being developed and are entering clinical trials. Our aim is to identify potential non-invasive biomarkers of PI3K signaling pathway inhibition in pediatric glioblastoma using in vitro nuclear magnetic resonance (NMR) spectroscopy, to aid identification of target inhibition and therapeutic response in early phase clinical trials of PI3K inhibitors in childhood cancer. Treatment of SF188 and KNS42 human pediatric glioblastoma cell lines with the dual pan-Class I PI3K/mTOR inhibitor PI-103, inhibited the PI3K signaling pathway and resulted in a decrease in phosphocholine (PC), total choline (tCho) and lactate levels (p<0.02) as detected by phosphorus (31P)- and proton (1H)-NMR. Similar changes were also detected using the pan–Class I PI3K inhibitor GDC-0941 which lacks significant mTOR activity and is entering Phase II clinical trials. In contrast, the DNA damaging agent temozolomide (TMZ), which is used as current frontline therapy in the treatment of glioblastoma postoperatively (in combination with radiotherapy), increased PC, glycerophosphocholine (GPC) and tCho levels (p<0.04). PI-103-induced NMR changes were associated with alterations in protein expression levels of regulatory enzymes involved in glucose and choline metabolism including GLUT1, HK2, LDHA and CHKA. Our results show that by using NMR we can detect distinct biomarkers following PI3K pathway inhibition compared to treatment with the DNA-damaging anti-cancer agent TMZ. This is the first study reporting that lactate and choline metabolites are potential non-invasive biomarkers for monitoring response to PI3K pathway inhibitors in pediatric glioblastoma.


British Medical Bulletin | 2013

At the frontier of progress for paediatric oncology: the neuroblastoma paradigm

Lucas Moreno; Lynley V. Marshall; Andrew D.J. Pearson

INTRODUCTION Neuroblastoma is one of the commonest and deadliest forms of childhood cancer and major initiatives are ongoing to improve the outcome of these patients. SOURCES OF DATA Data for this review were obtained from PubMed and abstracts from the American Society of Clinical Oncology and Advances in Neuroblastoma Research. AREAS OF AGREEMENT Collaborative clinical trials have led to major improvements in treatment outcomes for low and intermediate risk neuroblastoma, and international initiatives such as the International Neuroblastoma Risk Group have produced a very refined risk stratification incorporating clinical and biological risk factors. AREAS OF CONTROVERSY Despite many efforts, the outcome for high-risk neuroblastoma is still poor and the only new strategy incorporated into frontline treatment is anti-GD2 immunotherapy. It is unclear how new drugs targeting specific molecular aberrations will be incorporated. GROWING POINTS Genomic characterization and drug development have undergone major advances in the last 5 years leading to a much deeper understanding of tumour biology as well as active biomarker-driven preclinical and clinical research on new molecules that will hopefully progress faster and more efficiently into frontline combination treatment strategies. AREAS TIMELY FOR DEVELOPING RESEARCH Significant effort remains to be done in integrating the different new strategies, combining new molecularly targeted agents to maximize therapeutic benefit and incorporate immunotherapy together with targeted therapies.


Lancet Oncology | 2017

From class waivers to precision medicine in paediatric oncology

Andrew D.J. Pearson; Stefan M. Pfister; André Baruchel; Jean-Pierre Bourquin; Michela Casanova; Louis Chesler; François Doz; Angelika Eggert; Birgit Geoerger; David T. W. Jones; Pamela Kearns; Jan J. Molenaar; Bruce Morland; Gudrun Schleiermacher; Johannes H. Schulte; Josef Vormoor; Lynley V. Marshall; C. Michel Zwaan; Gilles Vassal

New drugs are crucially needed for children with cancer. The European Paediatric Regulation facilitates paediatric class waivers for drugs developed for diseases only occurring in adults. In this Review, we retrospectively searched oncology drugs that were class waivered between June, 2012, and June, 2015. 147 oncology class waivers were confirmed for 89 drugs. Mechanisms of action were then assessed as potential paediatric therapeutic targets by both a literature search and an expert review. 48 (54%) of the 89 class-waivered drugs had a mechanisms of action warranting paediatric development. Two (2%) class-waivered drugs were considered not relevant and 16 (18%) required further data. In light of these results, we propose five initiatives: an aggregated database of paediatric biological tumour drug targets; molecular profiling of all paediatric tumours at diagnosis and relapse; a joint academic-pharmaceutical industry preclinical platform to help analyse the activity of new drugs (Innovative Therapy for Children with Cancer Paediatric Preclinical Proof-of-Concept Platform); paediatric strategy forums; and the suppression of article 11b of the European Paediatric Regulation, which allows product-specific waivers on the grounds that the associated condition does not occur in children. These initiatives and a mechanism of action-based approach to drug development will accelerate the delivery of new therapeutic drugs for front-line therapy for those children who have unmet medical needs.

Collaboration


Dive into the Lynley V. Marshall's collaboration.

Top Co-Authors

Avatar

Andrew D.J. Pearson

Institute of Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Lucas Moreno

The Royal Marsden NHS Foundation Trust

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chris Jones

Institute of Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Darren Hargrave

Great Ormond Street Hospital

View shared research outputs
Top Co-Authors

Avatar

Fernando Carceller

The Royal Marsden NHS Foundation Trust

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stergios Zacharoulis

The Royal Marsden NHS Foundation Trust

View shared research outputs
Top Co-Authors

Avatar

Paul Workman

Institute of Cancer Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge