Lynn A. Spruce
Children's Hospital of Philadelphia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Lynn A. Spruce.
Journal of Experimental Medicine | 2003
Christoph W. Strey; Maciej M. Markiewski; Dimitrios Mastellos; Ruxandra Tudoran; Lynn A. Spruce; Linda E. Greenbaum; John D. Lambris
Complement has been implicated in liver repair after toxic injury. Here, we demonstrate that complement components are essential for liver regeneration, and mediate their effect by interacting with key signaling networks that promote hepatocyte proliferation. C3- or C5-deficient mice exhibited high mortality, parenchymal damage, and impaired liver regeneration after partial hepatectomy. Mice with dual C3 and C5 deficiency had a more exacerbated phenotype that was reversed by combined C3a and C5a reconstitution. Interception of C5a receptor signaling resulted in suppression of IL-6/TNFα induction and lack of C3 and C5a receptor stimulation attenuated nuclear factor–κB/STAT-3 activation after hepatectomy. These data indicate that C3a and C5a, two potent inflammatory mediators of the innate immune response, contribute essentially to the early priming stages of hepatocyte regeneration.
The FASEB Journal | 2002
Markus Huber-Lang; Niels C. Riedeman; J. Vidya Sarma; Ellen M. Younkin; Stephanie R. McGuire; Ines J. Laudes; Kristina T. Lu; Ren Feng Guo; Thomas A. Neff; Vaishalee A. Padgaonkar; John D. Lambris; Lynn A. Spruce; Dimitrios Mastellos; Firas S. Zetoune; Peter A. Ward
Innate immune functions are known to be compromised during sepsis, often with lethal consequences. There is also evidence in rats that sepsis is associated with excessive complement activation and generation of the potent anaphylatoxin C5a. In the presence of a cyclic peptide antagonist (C5aRa) to the C5a receptor (C5aR), the binding of murine 125I‐C5a to murine neutrophils was reduced, the in vitro chemotactic responses of mouse neutrophils to mouse C5a were markedly diminished, the acquired defect in hydrogen peroxide (H2O2) production of C5a‐exposed neutrophils was reversed, and the lung permeability index (extravascular leakage of albumin) in mice after intrapulmonary deposition of IgG immune complexes was markedly diminished. Mice that developed sepsis after cecal ligation/puncture (CLP) and were treated with C5aRa had greatly improved survival rates. These data suggest that C5aRa interferes with neutrophil responses to C5a, preventing C5a‐induced compromise of innate immunity during sepsis, with greatly improved survival rates after CLP.—Huber‐Lang, M. S., Riedeman, N. C., Sarma, J. V., Younkin, E. M., McGuire, S. R., Laudes, I. J., Lu, K. T., Guo, R.‐F., Neff, T. A., Padgaonkar, V. A., Lambris, J. D., Spruce, L., Mastellos, D., Zetoune, F. S., Ward, P. A. Protection of innate immunity by C5aR antagonist in septic mice. FASEB J. 16, 1567–1574 (2002)
The Journal of Neuroscience | 2011
Elizabeth N. Genda; Joshua G. Jackson; Amanda L. Sheldon; Susannah F. Locke; Todd M. Greco; John C. O'Donnell; Lynn A. Spruce; Rui Xiao; Wensheng Guo; Mary E. Putt; Steven H. Seeholzer; Harry Ischiropoulos; Michael B. Robinson
Efficient excitatory transmission depends on a family of transporters that use the Na+-electrochemical gradient to maintain low synaptic concentrations of glutamate. These transporters consume substantial energy in the spatially restricted space of fine astrocytic processes. GLT-1 (EAAT2) mediates the bulk of this activity in forebrain. To date, relatively few proteins have been identified that associate with GLT-1. In the present study, GLT-1 immunoaffinity isolates were prepared from rat cortex using three strategies and analyzed by liquid chromatography-coupled tandem mass spectrometry. In addition to known interacting proteins, the analysis identified glycolytic enzymes and outer mitochondrial proteins. Using double-label immunofluorescence, GLT-1 was shown to colocalize with the mitochondrial matrix protein, ubiquinol-cytochrome c reductase core protein 2 or the inner mitochondrial membrane protein, ADP/ATP translocase, in rat cortex. In biolistically transduced hippocampal slices, fluorescently tagged GLT-1 puncta overlapped with fluorescently tagged mitochondria along fine astrocytic processes. In a Monte Carlo-type computer simulation, this overlap was significantly more frequent than would occur by chance. Furthermore, fluorescently tagged hexokinase-1 overlapped with mitochondria or GLT-1, strongly suggesting that GLT-1, mitochondria, and the first step in glycolysis are cocompartmentalized in astrocytic processes. Acute inhibition of glycolysis or oxidative phosphorylation had no effect on glutamate uptake in hippocampal slices, but simultaneous inhibition of both processes significantly reduced transport. Together with previous results, these studies show that GLT-1 cocompartmentalizes with Na+/K+ ATPase, glycolytic enzymes, and mitochondria, providing a mechanism to spatially match energy and buffering capacity to the demands imposed by transport.
Journal of Clinical Investigation | 2008
Joachim Schessl; Yaqun Zou; Meagan Jane Mcgrath; Belinda S. Cowling; Baijayanta Maiti; Steven S. Chin; C. Sewry; Roberta Battini; Ying Hu; Denny L. Cottle; Michael M. Rosenblatt; Lynn A. Spruce; Arupa Ganguly; Janbernd Kirschner; Alexander R. Judkins; Jeffrey A. Golden; H.H. Goebel; Francesco Muntoni; Kevin M. Flanigan; Christina A. Mitchell; Carsten G. Bönnemann
Reducing body myopathy (RBM) is a rare disorder causing progressive muscular weakness characterized by aggresome-like inclusions in the myofibrils. Identification of genes responsible for RBM by traditional genetic approaches has been impossible due to the frequently sporadic occurrence in affected patients and small family sizes. As an alternative approach to gene identification, we used laser microdissection of intracytoplasmic inclusions identified in patient muscle biopsies, followed by nanoflow liquid chromatography-tandem mass spectrometry and proteomic analysis. The most prominent component of the inclusions was the Xq26.3-encoded four and a half LIM domain 1 (FHL1) protein, expressed predominantly in skeletal but also in cardiac muscle. Mutational analysis identified 4 FHL1 mutations in 2 sporadic unrelated females and in 2 families with severely affected boys and less-affected mothers. Transfection of kidney COS-7 and skeletal muscle C2C12 cells with mutant FHL1 induced the formation of aggresome-like inclusions that incorporated both mutant and wild-type FHL1 and trapped other proteins in a dominant-negative manner. Thus, a novel laser microdissection/proteomics approach has helped identify both inherited and de novo mutations in FHL1, thereby defining a new X-linked protein aggregation disorder of muscle.
Journal of Immunology | 2000
Arvind Sahu; Athena M. Soulika; Dimitrios Morikis; Lynn A. Spruce; William T. Moore; John D. Lambris
We have previously identified a 13-residue cyclic peptide, Compstatin, that binds to complement component C3 and inhibits complement activation. Herein, we describe the binding kinetics, structure-activity relationship, and biotransformation of Compstatin. Biomolecular interaction analysis using surface-plasmon resonance showed that Compstatin bound to native C3 and its fragments C3b and C3c, but not C3d. While binding of Compstatin to native C3 was biphasic, binding to C3b and C3c followed the 1:1 Langmuir binding model; the affinities of Compstatin for C3b and C3c were 22- and 74-fold lower, respectively, than that of native C3. Analysis of Compstatin analogs synthesized for structure-function studies indicated that 1) the 11-membered ring between disulfide-linked Cys2-Cys12 constitutes a minimal structure required for optimal activity; 2) retro-inverso isomerization results in loss of inhibitory activity; and 3) some residues of the type I β-turn segment also interact with C3. In vitro studies of Compstatin in human blood indicated that a major pathway of biotransformation was the removal of Ile1, which could be blocked by N-acetylation of the peptide. These findings indicate that acetylated Compstatin is stable against enzymatic degradation and that the type I β-turn segment is not only critical for preservation of the conformational stability, but also involved in intermolecular recognition.
Xenotransplantation | 1999
Arnt E. Fiane; Tom Eirik Mollnes; Vibeke Videm; Torstein Hovig; Kolbjørn Høgåsen; Ove J. Mellbye; Lynn A. Spruce; William T. Moore; Arvind Sahu; John D. Lambris
Fiane AE, Mollnes TE, Videm V, Hovig T, Høgåsen K, Mellbye OJ, Spruce L, Moore WT, Sahu A, Lambris JD. Compstatin, a peptide inhibitor of C3, prolongs survival of ex vivo perfused xenografts. Xenotransplantation 1999; 6: 000‐000 ©Munksgaard, Copenhagen
Cell | 2014
Scott A. Soleimanpour; Aditi Gupta; Marina Bakay; Alana M. Ferrari; David N. Groff; João Fadista; Lynn A. Spruce; Jake A. Kushner; Leif Groop; Steven H. Seeholzer; Brett A. Kaufman; Hakon Hakonarson; Doris A. Stoffers
Clec16a has been identified as a disease susceptibility gene for type 1 diabetes, multiple sclerosis, and adrenal dysfunction, but its function is unknown. Here we report that Clec16a is a membrane-associated endosomal protein that interacts with E3 ubiquitin ligase Nrdp1. Loss of Clec16a leads to an increase in the Nrdp1 target Parkin, a master regulator of mitophagy. Islets from mice with pancreas-specific deletion of Clec16a have abnormal mitochondria with reduced oxygen consumption and ATP concentration, both of which are required for normal β cell function. Indeed, pancreatic Clec16a is required for normal glucose-stimulated insulin release. Moreover, patients harboring a diabetogenic SNP in the Clec16a gene have reduced islet Clec16a expression and reduced insulin secretion. Thus, Clec16a controls β cell function and prevents diabetes by controlling mitophagy. This pathway could be targeted for prevention and control of diabetes and may extend to the pathogenesis of other Clec16a- and Parkin-associated diseases.
Journal of Proteome Research | 2010
Todd M. Greco; Steven H. Seeholzer; Adrian Mak; Lynn A. Spruce; Harry Ischiropoulos
Growing appreciation for astrocytes as active participants in nervous system development, neurovascular metabolic coupling, and neurological disease progression has stimulated recent investigation into specific astrocyte-secreted proteins that may mediate these functions. The current work utilized SILAC-generated isotope reference proteomes to quantify relative protein abundances between the astrocyte proteome and secretome. Multidimensional GeLC-MS/MS analysis of astrocyte conditioned media and cell lysates resulted in the relative quantification of 516 proteins, 92 of which were greater than 1.5-fold enriched in astrocyte-conditioned media (ACM). Eighty of the ACM-enriched proteins had N-terminal signal peptides, comprising well-known classically secreted proteins, such as apolipoprotein E and SPARC, and several cathepsins that localize to endosomal/lysosomal compartments. The remaining twelve ACM-enriched proteins, such as vimentin, ferritins, and histones, lacked N-terminal signal peptides. Also, 47 proteins contained predicted N-terminal signal peptides but were not enriched in ACM (<1.5-fold), 25 of which were localized to ER, Golgi, or mitochondria membrane-bound compartments. Overall, by combining quantitative proteomics with subcellular localization prediction, an informative description of protein distribution can be obtained, providing insights into protein secretion.
Journal of Immunology | 2003
Maria Rosaria Pinto; Cinzia Chinnici; Yuko Kimura; Daniela Melillo; Rita Marino; Lynn A. Spruce; Rosaria De Santis; Nicolò Parrinello; John D. Lambris
Deuterostome invertebrates possess complement genes, and in limited instances complement-mediated functions have been reported in these organisms. However, the organization of the complement pathway(s), as well as the functions exerted by the cloned gene products, are largely unknown. To address the issue of the presence of an inflammatory pathway in ascidians, we expressed in Escherichia coli the fragment of Ciona intestinalis C3-1 corresponding to mammalian complement C3a (rCiC3-1a) and assessed its chemotactic activity on C. intestinalis hemocytes. We found that the migration of C. intestinalis hemocytes toward rCiC3-1a was dose dependent, peaking at 500 nM, and was specific for CiC3-1a, being inhibited by an anti-rCiC3-1a-specific Ab. As is true for mammalian C3a, the chemotactic activity of C. intestinalis C3-1a was localized to the C terminus, because a peptide representing the 18 C-terminal amino acids (CiC3-1a59–76) also promoted hemocyte chemotaxis. Furthermore, the CiC3-1a terminal Arg was not crucial for chemotactic activity, because the desArg peptide (CiC3-1a59–75) retained most of the directional hemocyte migration activity. The CiC3-1a-mediated chemotaxis was inhibited by pretreatment of cells with pertussis toxin, suggesting that the receptor molecule mediating the chemotactic effect is Gi protein coupled. Immunohistochemical analysis with anti-rCiC3-1a-specific Ab and in situ hybridization experiments with a riboprobe corresponding to the 3′-terminal sequence of CiC3-1, performed on tunic sections of LPS-injected animals, showed that a majority of the infiltrating labeled hemocytes were granular amebocytes and compartment cells. Our findings indicate that CiC3-1a mediates chemotaxis of C. intestinalis hemocytes, thus suggesting an important role for this molecule in inflammatory processes.
Journal of Biological Chemistry | 2012
Marco Cassone; Alyssa L. Gagne; Lynn A. Spruce; Steven H. Seeholzer; Michael E. Sebert
Background: The pneumococcal HtrA protease represses competence selectively when the frequency of errors in protein synthesis is low. Results: HtrA digests both the bacterial competence-stimulating peptide (CSP) and unfolded proteins. Conclusion: The presence of proteins with exposed hydrophobic regions competitively reduces the degradation of CSP. Significance: This suggests a mechanism by which HtrA functions as a sensor for biosynthetic errors. The HtrA protease of Streptococcus pneumoniae functions both in a general stress response role and as an error sensor that specifically represses genetic competence when the overall level of biosynthetic errors in cellular proteins is low. However, the mechanism through which HtrA inhibits development of competence has been unknown. We found that HtrA digested the pneumococcal competence-stimulating peptide (CSP) and constituted the primary extracytoplasmic CSP-degrading activity in cultures of S. pneumoniae. Mass spectrometry demonstrated that cleavage predominantly followed residue Phe-8 of the CSP-1 isoform of the peptide within its central hydrophobic patch, and in competition assays, both CSP-1 and CSP-2 interacted with HtrA with similar efficiencies. More generally, analysis of β-casein digestion and of digestion within HtrA itself revealed a preference for substrates with non-polar residues at the P1 site. Consistent with a specificity for exposed hydrophobic residues, competition from native BSA only weakly inhibited digestion of CSP, but denaturation converted BSA into a strong competitive inhibitor of such proteolysis. Together these findings support a model in which digestion of CSP by HtrA is reduced in the presence of other unfolded proteins that serve as alternative targets for degradation. Such competition may provide a mechanism by which HtrA functions in a quality control capacity to monitor the frequency of biosynthetic errors that result in protein misfolding.