Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lynn G.L. Richardson is active.

Publication


Featured researches published by Lynn G.L. Richardson.


Journal of Molecular Biology | 2015

New insights into the mechanism of chloroplast protein import and its integration with protein quality control, organelle biogenesis and development.

Yamuna D. Paila; Lynn G.L. Richardson; Danny J. Schnell

The translocons at the outer (TOC) and the inner (TIC) envelope membranes of chloroplasts mediate the targeting and import of several thousand nucleus-encoded preproteins that are required for organelle biogenesis and homeostasis. The cytosolic events in preprotein targeting remain largely unknown, although cytoplasmic chaperones have been proposed to facilitate delivery to the TOC complex. Preprotein recognition is mediated by the TOC GTPase receptors Toc159 and Toc34. The receptors constitute a GTP-regulated switch, which initiates membrane translocation via Toc75, a member of the Omp85 (outer membrane protein 85)/TpsB (two-partner secretion system B) family of bacterial, plastid and mitochondrial β-barrel outer membrane proteins. The TOC receptor systems have diversified to recognize distinct sets of preproteins, thereby maximizing the efficiency of targeting in response to changes in gene expression during developmental and physiological events that impact organelle function. The TOC complex interacts with the TIC translocon to allow simultaneous translocation of preproteins across the envelope. Both the two inner membrane complexes, the Tic110 and 1 MDa complexes, have been implicated as constituents of the TIC translocon, and it remains to be determined how they interact to form the TIC channel and assemble the import-associated chaperone network in the stroma that drives import across the envelope membranes. This review will focus on recent developments in our understanding of the mechanisms and diversity of the TOC-TIC systems. Our goal is to incorporate these recent studies with previous work and present updated or revised models for the function of TOC-TIC in protein import.


PLOS ONE | 2010

Distinct Pathways Mediate the Sorting of Tail-Anchored Proteins to the Plastid Outer Envelope

Preetinder K. Dhanoa; Lynn G.L. Richardson; Matthew D. Smith; Satinder K. Gidda; Matthew P. A. Henderson; David W. Andrews; Robert T. Mullen

Background Tail-anchored (TA) proteins are a distinct class of membrane proteins that are sorted post-translationally to various organelles and function in a number of important cellular processes, including redox reactions, vesicular trafficking and protein translocation. While the molecular targeting signals and pathways responsible for sorting TA proteins to their correct intracellular destinations in yeasts and mammals have begun to be characterized, relatively little is known about TA protein biogenesis in plant cells, especially for those sorted to the plastid outer envelope. Methodology/Principal Findings Here we investigated the biogenesis of three plastid TA proteins, including the 33-kDa and 34-kDa GTPases of the translocon at the outer envelope of chloroplasts (Toc33 and Toc34) and a novel 9-kDa protein of unknown function that we define here as an outer envelope TA protein (OEP9). Using a combination of in vivo and in vitro assays we show that OEP9 utilizes a different sorting pathway than that used by Toc33 and Toc34. For instance, while all three TA proteins interact with the cytosolic OEP chaperone/receptor, AKR2A, the plastid targeting information within OEP9 is distinct from that within Toc33 and Toc34. Toc33 and Toc34 also appear to differ from OEP9 in that their insertion is dependent on themselves and the unique lipid composition of the plastid outer envelope. By contrast, the insertion of OEP9 into the plastid outer envelope occurs in a proteinaceous-dependent, but Toc33/34-independent manner and membrane lipids appear to serve primarily to facilitate normal thermodynamic integration of this TA protein. Conclusions/Significance Collectively, the results provide evidence in support of at least two sorting pathways for plastid TA outer envelope proteins and shed light on not only the complex diversity of pathways involved in the targeting and insertion of proteins into plastids, but also the molecular mechanisms that underlie the delivery of TA proteins to their proper intracellular locations in general.


Plant Physiology | 2007

Characterization of a Plastid Triacylglycerol Lipase from Arabidopsis

Anita K. Padham; Marianne Hopkins; Tzann-Wei Wang; Linda McNamara; Maisie Lo; Lynn G.L. Richardson; Matthew D. Smith; Catherine A. Taylor; John E. Thompson

Full-length cDNA corresponding to Arabidopsis (Arabidopsis thaliana) gene At2g31690, which has been annotated in GenBank as a putative triacylglycerol (TAG) lipase, was obtained by reverse transcription-polymerase chain reaction using RNA from senescing rosette leaves of Arabidopsis as a template. The cognate protein was found to contain the lipase active site sequence, and corresponding recombinant protein proved capable of deesterifying TAG. In vitro chloroplast import assays indicated that the lipase is targeted to chloroplasts. This was confirmed by confocal microscopy of rosette leaf tissue treated with fluorescein isocyanate-labeled, lipase-specific antibody, which revealed that lipase protein colocalizes with plastoglobular neutral lipids. Western-blot analysis indicated that the lipase is expressed in roots, inflorescence stems, flowers, siliques, and leaves and that it is strongly up-regulated in senescing rosette leaf tissue. Transgenic plants with suppressed lipase protein levels were obtained by expressing At2g31690 cDNA in antisense orientation under the regulation of a constitutive promoter. Transgenic plants bolted and flowered at the same time as wild-type plants, but were severely stunted and exhibited delayed rosette senescence. Moreover, the stunted growth phenotype correlated with irregular chloroplast morphology. The chloroplasts of transgenic plants were structurally deformed, had reduced abundance of thylakoids that were abnormally stacked, and contained more plastoglobular neutral lipids than chloroplasts of wild-type plants. These observations collectively indicate that this TAG lipase plays a role in maintaining the structural integrity of chloroplasts, possibly by mobilizing the fatty acids of plastoglobular TAG.


Frontiers in Plant Science | 2011

Protein–Protein Interaction Network and Subcellular Localization of the Arabidopsis Thaliana ESCRT Machinery

Lynn G.L. Richardson; Alexander S. M. Howard; Nicholas Khuu; Satinder K. Gidda; Andrew W. McCartney; Brett J. Morphy; Robert T. Mullen

The endosomal sorting complex required for transport (ESCRT) consists of several multi-protein subcomplexes which assemble sequentially at the endosomal surface and function in multivesicular body (MVB) biogenesis. While ESCRT has been relatively well characterized in yeasts and mammals, comparably little is known about ESCRT in plants. Here we explored the yeast two-hybrid protein interaction network and subcellular localization of the Arabidopsis thaliana ESCRT machinery. We show that the Arabidopsis ESCRT interactome possesses a number of protein–protein interactions that are either conserved in yeasts and mammals or distinct to plants. We show also that most of the Arabidopsis ESCRT proteins examined at least partially localize to MVBs in plant cells when ectopically expressed on their own or co-expressed with other interacting ESCRT proteins, and some also induce abnormal MVB phenotypes, consistent with their proposed functional role(s) as part of the ESCRT machinery in Arabidopsis. Overall, our results help define the plant ESCRT machinery by highlighting both conserved and unique features when compared to ESCRT in other evolutionarily diverse organisms, providing a foundation for further exploration of ESCRT in plants.


BMC Biochemistry | 2009

The acidic domains of the Toc159 chloroplast preprotein receptor family are intrinsically disordered protein domains

Lynn G.L. Richardson; Masoud Jelokhani-Niaraki; Matthew D. Smith

BackgroundThe Toc159 family of proteins serve as receptors for chloroplast-destined preproteins. They directly bind to transit peptides, and exhibit preprotein substrate selectivity conferred by an unknown mechanism. The Toc159 receptors each include three domains: C-terminal membrane, central GTPase, and N-terminal acidic (A-) domains. Although the function(s) of the A-domain remains largely unknown, the amino acid sequences are most variable within these domains, suggesting they may contribute to the functional specificity of the receptors.ResultsThe physicochemical properties of the A-domains are characteristic of intrinsically disordered proteins (IDPs). Using CD spectroscopy we show that the A-domains of two Arabidopsis Toc159 family members (atToc132 and atToc159) are disordered at physiological pH and temperature and undergo conformational changes at temperature and pH extremes that are characteristic of IDPs.ConclusionsIdentification of the A-domains as IDPs will be important for determining their precise function(s), and suggests a role in protein-protein interactions, which may explain how these proteins serve as receptors for such a wide variety of preprotein substrates.


Plant Physiology | 2014

Plants utilize a highly conserved system for repair of NADH and NADPH hydrates

Tom Daniel Niehaus; Lynn G.L. Richardson; Satinder K. Gidda; Mona Elbadawi-Sidhu; John K. Meissen; Robert T. Mullen; Oliver Fiehn; Andrew D. Hanson

The hydrates formed from NADH and NADPH by chemical or enzymatic damage are repaired in plants by highly conserved enzymes that are targeted to multiple compartments. NADH and NADPH undergo spontaneous and enzymatic reactions that produce R and S forms of NAD(P)H hydrates [NAD(P)HX], which are not electron donors and inhibit various dehydrogenases. In bacteria, yeast (Saccharomyces cerevisiae), and mammals, these hydrates are repaired by the tandem action of an ADP- or ATP-dependent dehydratase that converts (S)-NAD(P)HX to NAD(P)H and an epimerase that facilitates interconversion of the R and S forms. Plants have homologs of both enzymes, the epimerase homolog being fused to the vitamin B6 salvage enzyme pyridoxine 5′-phosphate oxidase. Recombinant maize (Zea mays) and Arabidopsis (Arabidopsis thaliana) NAD(P)HX dehydratases (GRMZM5G840928, At5g19150) were able to reconvert (S)-NAD(P)HX to NAD(P)H in an ATP-dependent manner. Recombinant maize and Arabidopsis epimerases (GRMZM2G061988, At5g49970) rapidly interconverted (R)- and (S)-NAD(P)HX, as did a truncated form of the Arabidopsis epimerase lacking the pyridoxine 5′-phosphate oxidase domain. All plant NAD(P)HX dehydratase and epimerase sequences examined had predicted organellar targeting peptides with a potential second start codon whose use would eliminate the targeting peptide. In vitro transcription/translation assays confirmed that both start sites were used. Dual import assays with purified pea (Pisum sativum) chloroplasts and mitochondria, and subcellular localization of GFP fusion constructs in tobacco (Nicotiana tabacum) suspension cells, indicated mitochondrial, plastidial, and cytosolic localization of the Arabidopsis epimerase and dehydratase. Ablation of the Arabidopsis dehydratase gene raised seedling levels of all NADHX forms by 20- to 40-fold, and levels of one NADPHX form by 10- to 30-fold. We conclude that plants have a canonical two-enzyme NAD(P)HX repair system that is directed to three subcellular compartments via the use of alternative translation start sites.


Frontiers in Plant Science | 2014

Targeting and assembly of components of the TOC protein import complex at the chloroplast outer envelope membrane

Lynn G.L. Richardson; Yamuna D. Paila; Steven R. Siman; Yi Chen; Matthew D. Smith; Danny J. Schnell

The translocon at the outer envelope membrane of chloroplasts (TOC) initiates the import of thousands of nuclear encoded preproteins required for chloroplast biogenesis and function. The multimeric TOC complex contains two GTP-regulated receptors, Toc34 and Toc159, which recognize the transit peptides of preproteins and initiate protein import through a β–barrel membrane channel, Toc75. Different isoforms of Toc34 and Toc159 assemble with Toc75 to form structurally and functionally diverse translocons, and the composition and levels of TOC translocons is required for the import of specific subsets of coordinately expressed proteins during plant growth and development. Consequently, the proper assembly of the TOC complexes is key to ensuring organelle homeostasis. This review will focus on our current knowledge of the targeting and assembly of TOC components to form functional translocons at the outer membrane. Our analyses reveal that the targeting of TOC components involves elements common to the targeting of other outer membrane proteins, but also include unique features that appear to have evolved to specifically facilitate assembly of the import apparatus.


eLife | 2016

Multi-functional roles for the polypeptide transport associated domains of Toc75 in chloroplast protein import

Yamuna D. Paila; Lynn G.L. Richardson; Hitoshi Inoue; Elizabeth S. Parks; James McMahon; Kentaro Inoue; Danny J. Schnell

Toc75 plays a central role in chloroplast biogenesis in plants as the membrane channel of the protein import translocon at the outer envelope of chloroplasts (TOC). Toc75 is a member of the Omp85 family of bacterial and organellar membrane insertases, characterized by N-terminal POTRA (polypeptide-transport associated) domains and C-terminal membrane-integrated β-barrels. We demonstrate that the Toc75 POTRA domains are essential for protein import and contribute to interactions with TOC receptors, thereby coupling preprotein recognition at the chloroplast surface with membrane translocation. The POTRA domains also interact with preproteins and mediate the recruitment of molecular chaperones in the intermembrane space to facilitate membrane transport. Our studies are consistent with the multi-functional roles of POTRA domains observed in other Omp85 family members and demonstrate that the domains of Toc75 have evolved unique properties specific to the acquisition of protein import during endosymbiotic evolution of the TOC system in plastids. DOI: http://dx.doi.org/10.7554/eLife.12631.001


Phytochemistry | 2015

Evidence that glutamine transaminase and omega-amidase potentially act in tandem to close the methionine salvage cycle in bacteria and plants.

Kenneth W. Ellens; Lynn G.L. Richardson; Océane Frelin; Joseph Collins; Cintia Ribeiro; Yih-feng Hsieh; Robert T. Mullen; Andrew D. Hanson

S-Adenosylmethionine is converted enzymatically and non-enzymatically to methylthioadenosine, which is recycled to methionine (Met) via a salvage pathway. In plants and bacteria, enzymes for all steps in this pathway are known except the last: transamination of α-ketomethylthiobutyrate to give Met. In mammals, glutamine transaminase K (GTK) and ω-amidase (ω-Am) are thought to act in tandem to execute this step, with GTK forming α-ketoglutaramate, which ω-Am hydrolyzes. Comparative genomics indicated that GTK and ω-Am could function likewise in plants and bacteria because genes encoding GTK and ω-Am homologs (i) co-express with the Met salvage gene 5-methylthioribose kinase in Arabidopsis, and (ii) cluster on the chromosome with each other and with Met salvage genes in diverse bacteria. Consistent with this possibility, tomato, maize, and Bacillus subtilis GTK and ω-Am homologs had the predicted activities: GTK was specific for glutamine as amino donor and strongly preferred α-ketomethylthiobutyrate as amino acceptor, and ω-Am strongly preferred α-ketoglutaramate. Also consistent with this possibility, plant GTK and ω-Am were localized to the cytosol, where the Met salvage pathway resides, as well as to organelles. This multiple targeting was shown to result from use of alternative start codons. In B. subtilis, ablating GTK or ω-Am had a modest but significant inhibitory effect on growth on 5-methylthioribose as sole sulfur source. Collectively, these data indicate that while GTK, coupled with ω-Am, is positioned to support significant Met salvage flux in plants and bacteria, it can probably be replaced by other aminotransferases.


Plant Signaling & Behavior | 2011

Meta-analysis of the expression profiles of the Arabidopsis ESCRT machinery

Lynn G.L. Richardson; Robert T. Mullen

The Endosomal Sorting Complex Required for Transport (ESCRT) machinery is a set of multi-protein complexes that are well conserved among all eukaryotes and mediate a remarkable array of cellular processes including late endosome/multivesicular body (MVB) formation, retroviral particle release, and membrane abscission during cytokinesis. While the molecular mechanisms underlying ESCRT function have been relatively well characterized in yeasts and mammals, far less is known about ESCRT in plants. In this study, we utilized publicly-available microarray, massively parallel signature sequencing (MPSS) and proteome data sets in order to survey the expression profiles of many of the components of the Arabidopsis thaliana ESCRT machinery. Overall, the results indicate that ESCRT expression in Arabidopsis is highly dynamic across a wide range of organs, tissues and treatments, consistent with the complex interplay that likely exists between the spatial and temporal regulation of the ESCRT machinery and the diverse array of roles that ESCRT participates in during plant growth and development.

Collaboration


Dive into the Lynn G.L. Richardson's collaboration.

Top Co-Authors

Avatar

Danny J. Schnell

University of Massachusetts Amherst

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yamuna D. Paila

University of Massachusetts Amherst

View shared research outputs
Top Co-Authors

Avatar

Matthew D. Smith

Wilfrid Laurier University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hitoshi Inoue

University of Massachusetts Amherst

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge