Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Satinder K. Gidda is active.

Publication


Featured researches published by Satinder K. Gidda.


The Plant Cell | 2006

Tung Tree DGAT1 and DGAT2 Have Nonredundant Functions in Triacylglycerol Biosynthesis and Are Localized to Different Subdomains of the Endoplasmic Reticulum

Jay M. Shockey; Satinder K. Gidda; Dorselyn C. Chapital; Jui-Chang Kuan; Preetinder K. Dhanoa; John M. Bland; Steven J. Rothstein; Robert T. Mullen; John M. Dyer

Seeds of the tung tree (Vernicia fordii) produce large quantities of triacylglycerols (TAGs) containing ∼80% eleostearic acid, an unusual conjugated fatty acid. We present a comparative analysis of the genetic, functional, and cellular properties of tung type 1 and type 2 diacylglycerol acyltransferases (DGAT1 and DGAT2), two unrelated enzymes that catalyze the committed step in TAG biosynthesis. We show that both enzymes are encoded by single genes and that DGAT1 is expressed at similar levels in various organs, whereas DGAT2 is strongly induced in developing seeds at the onset of oil biosynthesis. Expression of DGAT1 and DGAT2 in yeast produced different types and proportions of TAGs containing eleostearic acid, with DGAT2 possessing an enhanced propensity for the synthesis of trieleostearin, the main component of tung oil. Both DGAT1 and DGAT2 are located in distinct, dynamic regions of the endoplasmic reticulum (ER), and surprisingly, these regions do not overlap. Furthermore, although both DGAT1 and DGAT2 contain a similar C-terminal pentapeptide ER retrieval motif, this motif alone is not sufficient for their localization to specific regions of the ER. These data suggest that DGAT1 and DGAT2 have nonredundant functions in plants and that the production of storage oils, including those containing unusual fatty acids, occurs in distinct ER subdomains.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Disruption of the Arabidopsis CGI-58 homologue produces Chanarin–Dorfman-like lipid droplet accumulation in plants

Christopher N. James; Patrick J. Horn; Charlene R. Case; Satinder K. Gidda; Daiyuan Zhang; Robert T. Mullen; John M. Dyer; Richard G. W. Anderson; Kent D. Chapman

CGI-58 is the defective gene in the human neutral lipid storage disease called Chanarin-Dorfman syndrome. This disorder causes intracellular lipid droplets to accumulate in nonadipose tissues, such as skin and blood cells. Here, disruption of the homologous CGI-58 gene in Arabidopsis thaliana resulted in the accumulation of neutral lipid droplets in mature leaves. Mass spectroscopy of isolated lipid droplets from cgi-58 loss-of-function mutants showed they contain triacylglycerols with common leaf-specific fatty acids. Leaves of mature cgi-58 plants exhibited a marked increase in absolute triacylglycerol levels, more than 10-fold higher than in wild-type plants. Lipid levels in the oil-storing seeds of cgi-58 loss-of-function plants were unchanged, and unlike mutations in β-oxidation, the cgi-58 seeds germinated and grew normally, requiring no rescue with sucrose. We conclude that the participation of CGI-58 in neutral lipid homeostasis of nonfat-storing tissues is similar, although not identical, between plant and animal species. This unique insight may have implications for designing a new generation of technologies that enhance the neutral lipid content and composition of crop plants.


Plant Physiology | 2013

Identification of a New Class of Lipid Droplet-Associated Proteins in Plants

Patrick J. Horn; Christopher N. James; Satinder K. Gidda; Aruna Kilaru; John M. Dyer; Robert T. Mullen; John B. Ohlrogge; Kent D. Chapman

A new class of lipid droplet-associated proteins in nonseed tissues is identified by integrated omics approaches. Lipid droplets in plants (also known as oil bodies, lipid bodies, or oleosomes) are well characterized in seeds, and oleosins, the major proteins associated with their surface, were shown to be important for stabilizing lipid droplets during seed desiccation and rehydration. However, lipid droplets occur in essentially all plant cell types, many of which may not require oleosin-mediated stabilization. The proteins associated with the surface of nonseed lipid droplets, which are likely to influence the formation, stability, and turnover of this compartment, remain to be elucidated. Here, we have combined lipidomic, proteomic, and transcriptomic studies of avocado (Persea americana) mesocarp to identify two new lipid droplet-associated proteins, which we named LDAP1 and LDAP2. These proteins are highly similar to each other and also to the small rubber particle proteins that accumulate in rubber-producing plants. An Arabidopsis (Arabidopsis thaliana) homolog to LDAP1 and LDAP2, At3g05500, was localized to the surface of lipid droplets after transient expression in tobacco (Nicotiana tabacum) cells that were induced to accumulate triacylglycerols. We propose that small rubber particle protein-like proteins are involved in the general process of binding and perhaps the stabilization of lipid-rich particles in the cytosol of plant cells and that the avocado and Arabidopsis protein members reveal a new aspect of the cellular machinery that is involved in the packaging of triacylglycerols in plant tissues.


The Plant Cell | 2008

Arabidopsis PEROXIN11c-e, FISSION1b, and DYNAMIN-RELATED PROTEIN3A Cooperate in Cell Cycle–Associated Replication of Peroxisomes

Matthew J. Lingard; Satinder K. Gidda; Scott E. Bingham; Steven J. Rothstein; Robert T. Mullen; Richard N. Trelease

Although participation of PEROXIN11 (PEX11), FISSION1 (FISl), and DYNAMIN-RELATED PROTEIN (DRP) has been well established during induced peroxisome proliferation in response to external stimuli, their roles in cell cycle–associated constitutive replication/duplication have not been fully explored. Herein, bimolecular fluorescence complementation experiments with Arabidopsis thaliana suspension cells revealed homooligomerization of all five PEX11 isoforms (PEX11a-e) and heterooligomerizations of all five PEX11 isoforms with FIS1b, but not FIS1a nor DRP3A. Intracellular protein targeting experiments demonstrated that FIS1b, but not FIS1a nor DRP3A, targeted to peroxisomes only when coexpressed with PEX11d or PEX11e. Simultaneous silencing of PEX11c-e or individual silencing of DRP3A, but not FIS1a nor FIS1b, resulted in ∼40% reductions in peroxisome number. During G2 in synchronized cell cultures, peroxisomes sequentially enlarged, elongated, and then doubled in number, which correlated with peaks in PEX11, FIS1, and DRP3A expression. Overall, these data support a model for the replication of preexisting peroxisomes wherein PEX11c, PEX11d, and PEX11e act cooperatively during G2 to promote peroxisome elongation and recruitment of FIS1b to the peroxisome membrane, where DRP3A stimulates fission of elongated peroxisomes into daughter peroxisomes, which are then distributed between daughter cells.


Plant Physiology and Biochemistry | 2009

Arabidopsis thaliana GPAT8 and GPAT9 are localized to the ER and possess distinct ER retrieval signals: Functional divergence of the dilysine ER retrieval motif in plant cells

Satinder K. Gidda; Jay M. Shockey; Steven J. Rothstein; John M. Dyer; Robert T. Mullen

Glycerol-3-phosphate acyltransferase (GPAT; EC 2.3.1.15) catalyzes the committed step in the production of glycerolipids, which are major components of cellular membranes, seed storage oils, and epicuticular wax coatings. While the biochemical activities of GPATs have been characterized in detail, the cellular features of these enzymes are only beginning to emerge. Here we characterized the phylogenetic relationships and cellular properties of two GPAT enzymes from the relatively large Arabidopsis thaliana GPAT family, including GPAT8, which is involved in cutin biosynthesis, and GPAT9, which is a new putative GPAT that has extensive homology with a GPAT from mammalian cells involved in storage oil formation and, thus, may have a similar role in plants. Immunofluorescence microscopy of transiently-expressed myc-epitope-tagged GPAT8 and GPAT9 revealed that both proteins were localized to the endoplasmic reticulum (ER), and differential permeabilization experiments indicated that their N- and C-termini were oriented towards the cytosol. However, these two proteins contained distinct types of ER retrieval signals, with GPAT8 possessing a divergent type of dilysine motif (-KK-COOH rather than the prototypic -KKXX-COOH or -KXKXX-COOH motif) and GPAT9 possessing a hydrophobic pentapeptide motif (-phi-X-X-K/R/D/E-phi-; where phi are large hydrophobic amino acid residues). Notably, the divergent dilysine motif in GPAT8 only functioned effectively when additional upstream residues were included to provide the proper protein context. Extensive mutational analyses of the divergent dilysine motif, based upon sequences present in the C-termini of other GPAT8s from various plant species, further expanded the functional definition of this molecular targeting signal, thereby providing insight to the targeting signals in other GPAT family members as well as other ER-resident membrane proteins within plant cells.


Plant Cell and Environment | 2009

Increased nitrogen‐use efficiency in transgenic rice plants over‐expressing a nitrogen‐responsive early nodulin gene identified from rice expression profiling

Yong-Mei Bi; Surya Kant; Joseph Clark; Satinder K. Gidda; Feng Ming; Jianyao Xu; Amanda Rochon; Barry J. Shelp; Lixin Hao; Rong Zhao; Robert T. Mullen; Tong Zhu; Steven J. Rothstein

Development of genetic varieties with improved nitrogen-use efficiency (NUE) is essential for sustainable agriculture. In this study, we developed a growth system for rice wherein N was the growth-limiting factor, and identified N-responsive genes by a whole genome transcriptional profiling approach. Some genes were selected to test their functionality in NUE by a transgenic approach. One such example with positive effects on NUE is an early nodulin gene OsENOD93-1. This OsENOD93-1 gene responded significantly to both N induction and N reduction. Transgenic rice plants over-expressing the OsENOD93-1 gene had increased shoot dry biomass and seed yield. This OsENOD93-1 gene was expressed at high levels in roots of wild-type (WT) plants, and its protein product was localized in mitochondria. Transgenic plants accumulated higher concentrations of total amino acids and total N in roots. A higher concentration of amino acids in xylem sap was detected in transgenic plants, especially under N stress. In situ hybridization revealed that OsENOD93-1 is expressed in vascular bundles, as well as in epidermis and endodermis. This work demonstrates that transcriptional profiling, coupled with a transgenic validation approach, is an effective strategy for gene discovery. The knowledge gained from this study could be applied to other important crops.


New Phytologist | 2010

Characterization of the Arabidopsis thaliana exocyst complex gene families by phylogenetic, expression profiling, and subcellular localization studies

Yolanda T. Chong; Satinder K. Gidda; Chris Sanford; John Parkinson; Robert T. Mullen; Daphne R. Goring

*The exocyst is a complex of eight proteins (Sec3p, Sec5p, Sec6p, Sec8p, Sec10p, Sec15p, Exo70p and Exo84p) involved in tethering vesicles to the plasma membrane during regulated or polarized secretion. Here, the plant exocyst complex was explored in phylogenetic, expression, and subcellular localization studies. *Evolutionary relationships of predicted exocyst subunits were examined in the complete genomes of Arabidopsis thaliana, Oryza sativa, Populus trichocarpa and Physcomitrella patens. Furthermore, detailed expression profiling of the A. thaliana microarray databases was performed and subcellular localization patterns were studied. *Several plant exocyst subunit genes appear to have undergone gene expansion in a common ancestor and subsequent duplication events in independent plant lineages. Expression profiling revealed that the A. thaliana Exo70 gene family exhibits dynamic expression patterns, while the remaining exocyst subunit genes displayed more static profiles. Subcellular localization patterns for A. thaliana exocyst subunits ranged from cytosolic to endosomal compartments (with enrichment in the early endosomes and the trans-Golgi network). Interestingly, two endosomal-localized AtExo70 proteins also recruited other exocyst subunits to these compartments. *Overall subcellular localization patterns were observed that were also found in yeast and animal cells, and this, coupled with the evolutionary relationships, suggests that the exocyst may perform similar conserved functions in plants.


Journal of Experimental Botany | 2014

AMT1;1 transgenic rice plants with enhanced NH4 + permeability show superior growth and higher yield under optimal and suboptimal NH4 + conditions

Kosala Ranathunge; Ashraf El-Kereamy; Satinder K. Gidda; Yong Mei Bi; Steven J. Rothstein

The major source of nitrogen for rice (Oryza sativa L.) is ammonium (NH4 +). The NH4 + uptake of roots is mainly governed by membrane transporters, with OsAMT1;1 being a prominent member of the OsAMT1 gene family that is known to be involved in NH4 + transport in rice plants. However, little is known about its involvement in NH4 + uptake in rice roots and subsequent effects on NH4 + assimilation. This study shows that OsAMT1;1 is a constitutively expressed, nitrogen-responsive gene, and its protein product is localized in the plasma membrane. Its expression level is under the control of circadian rhythm. Transgenic rice lines (L-2 and L-3) overexpressing the OsAMT1;1 gene had the same root structure as the wild type (WT). However, they had 2-fold greater NH4 + permeability than the WT, whereas OsAMT1;1 gene expression was 20-fold higher than in the WT. Analogous to the expression, transgenic lines had a higher NH4 + content in the shoots and roots than the WT. Direct NH4 + fluxes in the xylem showed that the transgenic lines had significantly greater uptake rates than the WT. Higher NH4 + contents also promoted higher expression levels of genes in the nitrogen assimilation pathway, resulting in greater nitrogen assimilates, chlorophyll, starch, sugars, and grain yield in transgenic lines than in the WT under suboptimal and optimal nitrogen conditions. OsAMT1;1 also enhanced overall plant growth, especially under suboptimal NH4 + levels. These results suggest that OsAMT1;1 has the potential for improving nitrogen use efficiency, plant growth, and grain yield under both suboptimal and optimal nitrogen fertilizer conditions.


PLOS ONE | 2010

Distinct Pathways Mediate the Sorting of Tail-Anchored Proteins to the Plastid Outer Envelope

Preetinder K. Dhanoa; Lynn G.L. Richardson; Matthew D. Smith; Satinder K. Gidda; Matthew P. A. Henderson; David W. Andrews; Robert T. Mullen

Background Tail-anchored (TA) proteins are a distinct class of membrane proteins that are sorted post-translationally to various organelles and function in a number of important cellular processes, including redox reactions, vesicular trafficking and protein translocation. While the molecular targeting signals and pathways responsible for sorting TA proteins to their correct intracellular destinations in yeasts and mammals have begun to be characterized, relatively little is known about TA protein biogenesis in plant cells, especially for those sorted to the plastid outer envelope. Methodology/Principal Findings Here we investigated the biogenesis of three plastid TA proteins, including the 33-kDa and 34-kDa GTPases of the translocon at the outer envelope of chloroplasts (Toc33 and Toc34) and a novel 9-kDa protein of unknown function that we define here as an outer envelope TA protein (OEP9). Using a combination of in vivo and in vitro assays we show that OEP9 utilizes a different sorting pathway than that used by Toc33 and Toc34. For instance, while all three TA proteins interact with the cytosolic OEP chaperone/receptor, AKR2A, the plastid targeting information within OEP9 is distinct from that within Toc33 and Toc34. Toc33 and Toc34 also appear to differ from OEP9 in that their insertion is dependent on themselves and the unique lipid composition of the plastid outer envelope. By contrast, the insertion of OEP9 into the plastid outer envelope occurs in a proteinaceous-dependent, but Toc33/34-independent manner and membrane lipids appear to serve primarily to facilitate normal thermodynamic integration of this TA protein. Conclusions/Significance Collectively, the results provide evidence in support of at least two sorting pathways for plastid TA outer envelope proteins and shed light on not only the complex diversity of pathways involved in the targeting and insertion of proteins into plastids, but also the molecular mechanisms that underlie the delivery of TA proteins to their proper intracellular locations in general.


Journal of Biological Chemistry | 2010

Temperature-sensitive post-translational regulation of plant omega-3 fatty-acid desaturases is mediated by the endoplasmic reticulum-associated degradation pathway.

Jami O'Quin; Linda Bourassa; Daiyuan Zhang; Jay M. Shockey; Satinder K. Gidda; Spencer Fosnot; Kent D. Chapman; Robert T. Mullen; John M. Dyer

Changes in ambient temperature represent a major physiological challenge to membranes of poikilothermic organisms. In plants, the endoplasmic reticulum (ER)-localized omega-3 fatty-acid desaturases (Fad3) increase the production of polyunsaturated fatty acids at cooler temperatures, but the FAD3 genes themselves are typically not up-regulated during this adaptive response. Here, we expressed two closely related plant FAD3 genes in yeast cells and found that their enzymes produced significantly different amounts of omega-3 fatty acids and that these differences correlated to differences in rates of protein turnover. Domain-swapping and mutagenesis experiments revealed that each protein contained a degradation signal in its N terminus and that the charge density of a PEST-like sequence within this region was largely responsible for the differences in rates of protein turnover. The half-life of each Fad3 protein was increased at cooler temperatures, and protein degradation required specific components of the ER-associated degradation pathway including the Cdc48 adaptor proteins Doa1, Shp1, and Ufd2. Expression of the Fad3 proteins in tobacco cells incubated with the proteasomal inhibitor MG132 further confirmed that they were degraded via the proteasomal pathway in plants. Collectively, these findings indicate that Fad3 protein abundance is regulated by a combination of cis-acting degradation signals and the ubiquitin-proteasome pathway and that modulation of Fad3 protein amounts in response to temperature may represent one mechanism of homeoviscous adaptation in plants.

Collaboration


Dive into the Satinder K. Gidda's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kent D. Chapman

University of North Texas

View shared research outputs
Top Co-Authors

Avatar

Jay M. Shockey

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Olga Yurchenko

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

Daiyuan Zhang

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Patrick J. Horn

University of North Texas

View shared research outputs
Researchain Logo
Decentralizing Knowledge