Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lynn K. Shay is active.

Publication


Featured researches published by Lynn K. Shay.


Monthly Weather Review | 2000

Effects of a Warm Oceanic Feature on Hurricane Opal

Lynn K. Shay; Gustavo Goni; Atlantic Oceanographic; Peter G. Black

On 4 October 1995, Hurricane Opal deepened from 965 to 916 hPa in the Gulf of Mexico over a 14-h period upon encountering a warm core ring (WCR) in the ocean shed by the Loop Current during an upper-level atmospheric trough interaction. Based on historical hydrographic measurements placed within the context of a two-layer model and surface height anomalies (SHA) from the radar altimeter on the TOPEX mission, upperlayer thickness fields indicated the presence of two warm core rings during September and October 1995. As Hurricane Opal passed directly over one of these WCRs, the 1-min surface winds increased from 35 to more than 60 m s21, and the radius of maximum wind decreased from 40 to 25 km. Pre-Opal SHAs in the WCR exceeded 30 cm where the estimated depth of the 208C isotherm was located between 175 and 200 m. Subsequent to Opal’s passage, this depth decreased approximately 50 m, which suggests upwelling underneath the storm track due to Ekman divergence. The maximum heat loss of approximately 24 Kcal cm22 relative to depth of the 268C isotherm was a factor of 6 times the threshold value required to sustain a hurricane. Since most of this loss occurred over a period of 14 h, the heat content loss of 24 Kcal cm22 equates to approximately 20 kW m22. Previous observational findings suggest that about 10%‐15% of upper-ocean cooling is due to surface heat fluxes. Estimated surface heat fluxes based upon heat content changes range from 2000 to 3000 W m 22 in accord with numerically simulated surface heat fluxes during Opal’s encounter with the WCR. Composited AVHRR-derived SSTs indicated a2 8‐38C cooling associated with vertical mixing in the along-track direction of Opal except over the WCR where AVHRR-derived and buoy-derived SSTs decreased only by about 0.58‐18C. Thus, the WCR’s effect was to provide a regime of positive feedback to the hurricane rather than negative feedback induced by cooler waters due to upwelling and vertical mixing as observed over the Bay of Campeche and north of the WCR.


Weather and Forecasting | 2005

Further Improvements to the Statistical Hurricane Intensity Prediction Scheme (SHIPS)

Mark DeMaria; Michelle Mainelli; Lynn K. Shay; John A. Knaff; John Kaplan

Modifications to the Atlantic and east Pacific versions of the operational Statistical Hurricane Intensity Prediction Scheme (SHIPS) for each year from 1997 to 2003 are described. Major changes include the addition of a method to account for the storm decay over land in 2000, the extension of the forecasts from 3 to 5 days in 2001, and the use of an operational global model for the evaluation of the atmospheric predictors instead of a simple dry-adiabatic model beginning in 2001. A verification of the SHIPS operational intensity forecasts is presented. Results show that the 1997–2003 SHIPS forecasts had statistically significant skill (relative to climatology and persistence) out to 72 h in the Atlantic, and at 48 and 72 h in the east Pacific. The inclusion of the land effects reduced the intensity errors by up to 15% in the Atlantic, and up to 3% in the east Pacific, primarily for the shorter-range forecasts. The inclusion of land effects did not significantly degrade the forecasts at any time period. Results also showed that the 4–5-day forecasts that began in 2001 did not have skill in the Atlantic, but had some skill in the east Pacific. An experimental version of SHIPS that included satellite observations was tested during the 2002 and 2003 seasons. New predictors included brightness temperature information from Geostationary Operational Environmental Satellite (GOES) channel 4 (10.7 m) imagery, and oceanic heat content (OHC) estimates inferred from satellite altimetry observations. The OHC estimates were only available for the Atlantic basin. The GOES data significantly improved the east Pacific forecasts by up to 7% at 12–72 h. The combination of GOES and satellite altimetry improved the Atlantic forecasts by up to 3.5% through 72 h for those storms west of 50°W.


Bulletin of the American Meteorological Society | 1998

Landfalling Tropical Cyclones: Forecast Problems and Associated Research Opportunities

Frank D. Marks; Lynn K. Shay; Gary Barnes; Peter G. Black; Mark DeMaria; Bill McCaul; John Mounari; Michael T. Montgomery; Mark D. Powell; Jim Dungan Smith; Bob Tuleya; Greg Tripoli; Lian Xie; Ray Zehr

Abstract The Fifth Prospectus Development Team of the U.S. Weather Research Program was charged to identify and delineate emerging research opportunities relevant to the prediction of local weather, flooding, and coastal ocean currentsassociated with landfalling U.S. hurricanes specifically, and tropical cyclones in general. Central to this theme are basicand applied research topics, including rapid intensity change, initialization of and parameterization in dynamical models, coupling of atmospheric and oceanic models, quantitative use of satellite information, and mobile observing strategies to acquire observations to evaluate and validate predictive models. To improve the necessary understanding ofphysical processes and provide the initial conditions for realistic predictions, a focused, comprehensive mobile observing system in a translating storm-coordinate system is required. Given the development of proven instrumentation andimprovement of existing systems, three-dimensional atmospheric and oceanic d...


Journal of Geophysical Research | 1997

HF radar comparisons with moored estimates of current speed and direction: Expected differences and implications

Hans C. Graber; Brian K. Haus; Rickey D. Chapman; Lynn K. Shay

The validation of estimates of ocean surface current speed and direction from high-frequency (HF) Doppler radars can be obtained through comparisons with measurements from moored near-surface current meters, acoustic Doppler current profilers, or drifters. Expected differences between current meter (CM) and HF radar estimates of ocean surface vector currents depend on numerous sources of errors and differences such as instrument and sensor limitations, sampling characteristics, mooring response, and geophysical variability. We classify these sources of errors and differences as being associated exclusively with the current meter, as being associated exclusively with the HF radar, or as a result of differing methodologies in which current meters and HF radars sample the spatially and temporally varying ocean surface current vector field. In this latter context we consider three geophysical processes, namely, the Stokes drift, Ekman drift, and baroclinicity, which contribute to the differences between surface and near- surface vector current measurements. The performance of the HF radar is evaluated on the basis of these expected differences. Vector currents were collected during the High Resolution Remote Sensing Experiment II off the coast of Cape Hatteras, North Carolina, in June 1993. The results of this analysis suggest that 40%-60% of the observed differences between near-surface CM and HF radar velocity measurements can be explained in terms of contributions from instrument noise, collocation and concurrence differences, and geophysical processes. The rms magnitude difference ranged from 11 to 20 cm s -1 at the four mooring sites. The average angular difference ranged between 15 o and 25 o of which about 10 o is attributed to the directional error of the radar current vector estimates due to the alignment of the radial beams.


Journal of Geophysical Research | 1992

Upper ocean response to Hurricane Gilbert

Lynn K. Shay; Peter G. Black; Arthur J. Mariano; Jeffery D. Hawkins; Russell L. Elsberry

The evolving upper ocean response excited by the passage of hurricane Gilbert (September 14-19, 1988) was investigated using current and temperature observations acquired from the deployment of 79 airborne expendable current profilers (AXCPs) and 51 airborne expendable bathythermographs from the National Oceanic and Atmospheric Administration WP-3D aircraft in the western Gulf of Mexico. The sea surface temperatures (SSTs), mixed layer depths, and bulk Richardson numbers were objectively analyzed to examine the spatial variability of the upper ocean response to Gilbert. Net decreases of the SSTs of 3o-4oC were observed by the profilers as well as by the airborne infrared thermometer (AIRT) along the flight tracks and advanced very high resolution radiometer (AVHRR) imagery. The AXCPs indicated a marked cooling from 29oC to about 25.5oC on September 17, 1988, which was about 1.2 inertial periods (IP) following storm passage. This pool of cooler water (3.5 o) was located further downstream in the hurricane wake by September 19 (2.7 IP following the storm) as a result of the near-inertial currents in the mixed layer. While there was a bias of about 0.6oC and 1.7oC between the in situ and AVHRR-derived SSTs, respectively, both the AVHRR images and the objectively analyzed fields indicated a rightward bias in the upper ocean cooling that extended from the storm track to about 4Rmax (where Rmax, the radius of maximum winds, is equal to 50 km). The larger SST offset of 1.7oC was due to the difference between the time of the AVHRR image and the time of the aircraft experiment on September 19. The SSTs derived from the AVHRR images and the AIRT also indicated large gradients between the cold wake and the warm eddy in the central Gulf of Mexico. The mixed layer deepened by about 30-35 m on the right side of the track during the storm and 1.2 IP later, with little evidence of continued deepening afterward. The mixed layer current vectors demonstrate that a strong, near-inertially rotating current was excited by the passage of Gilbert, with maxima of about 1-1.4 m s -1 . The currents, observed during and subsequent to (1.2 IP) the storm, diverged from the storm track, whereas the mixed layer current vectors 2.7 IP after storm passage converged toward the track, with relative maxima of 0.8-1 m s -1. This alternating pattern of convergence and divergence of the mixed layer current was associated with the upwelling and downwelling cycles of the baroclinic response. Considerable current shear existed between the mixed layer and the thermocline currents in the cool wake between the storm track and the 4Rmax. Estimates of the bulk Richardson numbers ranged between 0.2 and 1.0 during Gilbert and at 1.2 IP, which suggests that enhanced current shears were responsible for some of the mixed layer deepening.


Weather and Forecasting | 2008

Application of Oceanic Heat Content Estimation to Operational Forecasting of Recent Atlantic Category 5 Hurricanes

Michelle Mainelli; Mark DeMaria; Lynn K. Shay; Gustavo Goni

Research investigating the importance of the subsurface ocean structure on tropical cyclone intensity change has been ongoing for several decades. While the emergence of altimetry-derived sea height observations from satellites dates back to the 1980s, it was difficult and uncertain as to how to utilize these measurements in operations as a result of the limited coverage. As the in situ measurement coverage expanded, it became possible to estimate the upper oceanic heat content (OHC) over most ocean regions. Beginning in 2002, daily OHC analyses have been generated at the National Hurricane Center (NHC). These analyses are used qualitatively for the official NHC intensity forecast, and quantitatively to adjust the Statistical Hurricane Intensity Prediction Scheme (SHIPS) forecasts. The primary purpose of this paper is to describe how upper-ocean structure information was transitioned from research to operations, and how it is being used to generate NHC’s hurricane intensity forecasts. Examples of the utility of this information for recent category 5 hurricanes (Isabel, Ivan, Emily, Katrina, Rita, and Wilma from the 2003–05 hurricane seasons) are also presented. Results show that for a large sample of Atlantic storms, the OHC variations have a small but positive impact on the intensity forecasts. However, for intense storms, the effect of the OHC is much more significant, suggestive of its importance on rapid intensification. The OHC input improved the average intensity errors of the SHIPS forecasts by up to 5% for all cases from the category 5 storms, and up to 20% for individual storms, with the maximum improvement for the 72–96-h forecasts. The qualitative use of the OHC information on the NHC intensity forecasts is also described. These results show that knowledge of the upper-ocean thermal structure is fundamental to accurately forecasting intensity changes of tropical cyclones, and that this knowledge is making its way into operations. The statistical results obtained here indicate that the OHC only becomes important when it has values much larger than that required to support a tropical cyclone. This result suggests that the OHC is providing a measure of the upper ocean’s influence on the storm and improving the forecast.


Monthly Weather Review | 2000

The Interaction between Hurricane Opal (1995) and a Warm Core Ring in the Gulf of Mexico

Xiaodong Hong; Simon W. Chang; Sethu Raman; Lynn K. Shay; Richard M. Hodur

Abstract Hurricane Opal (1995) experienced a rapid, unexpected intensification in the Gulf of Mexico that coincided with its encounter with a warm core ring (WCR). The relative positions of Opal and the WCR and the timing of the intensification indicate strong air–sea interactions between the tropical cyclone and the ocean. To study the mutual response of Opal and the Gulf of Mexico, a coupled model is used consisting of a nonhydrostatic atmospheric component of the Naval Research Laboratory’s Coupled Ocean–Atmosphere Mesoscale Prediction System (COAMPS), and the hydrostatic Geophysical Fluid Dynamics Laboratory’s Modular Ocean Model version 2 (MOM 2). The coupling between the ocean and the atmosphere components of the model are accomplished by conservation of heat, salt, momentum, as well as the sensible and latent heat fluxes at the air–sea interface. The atmospheric model has two nests with spatial resolutions of 0.6° and 0.2°. The ocean model has a uniform resolution of 0.2°. The oceanic model domain ...


Journal of Physical Oceanography | 1987

Near-Inertial Ocean Current Response to Hurricane Frederic

Lynn K. Shay; Russell L. Elsberry

Abstract Hurricane Frederic passed with 80 to 130 km of the U.S. Naval Oceanographic Office current meter arrays in water depths ranging from 100 to 470 m near the DeSoto Canyon region, and within 150 km of an Ocean Thermal Energy Conversion (OTEC) mooring in 1050 m of water. Excitation of near-inertial waves by the moving hurricane was observed throughout the water column along the canyon walls and at the OTEC site. The frequencies of the waves were blue-shifted between 1% to 6% above the local inertial frequency. The horizontal wavelength of 250 km is consistent with an energetic first baroclinic-mode response, but is considerably below the linear theory prediction of 550 km. The inferred vertical wavelengths of the immediate response exceeded 1000 m along the northern and eastern sides of the canyon since the currents throughout the water column increased within hours of the hurricane passage. Later, the vertical wavelengths were about equal to the water depth. The vertical group velocities associated ...


Bulletin of the American Meteorological Society | 2004

EPIC2001 and the Coupled Ocean–Atmosphere System of the Tropical East Pacific

David J. Raymond; Steven K. Esbensen; Clayton A. Paulson; Michael C. Gregg; Christopher S. Bretherton; Walter A. Petersen; Robert Cifelli; Lynn K. Shay; Carter Ohlmann; Paquita Zuidema

Abstract Coupled global ocean–atmosphere models currently do a poor job of predicting conditions in the tropical east Pacific, and have a particularly hard time reproducing the annual cycle in this region. This poor performance is probably due to the sensitivity of the east Pacific to the inadequate representation of certain physical processes in the modeled ocean and atmosphere. The representations of deep cumulus convection, ocean mixing, and stratus region energetics are known to be problematic in such models. The U.S. Climate Variability and Predictability (CLIVAR) program sponsored the field experiment East Pacific Investigation of Climate Processes in the Coupled Ocean–Atmosphere System 2001 (EPIC2001), which has the goal of providing the observational basis needed to improve the representation of certain key physical processes in models. In addition to physical processes, EPIC2001 research is directed toward a better understanding and simulation of the effects of short-term variability in the east ...


Journal of Physical Oceanography | 2003

The Role of Oceanic Mesoscale Features on the Tropical Cyclone-Induced Mixed Layer Response: A Case Study

S. Daniel Jacob; Lynn K. Shay

Oceanic mixed layer (ML) response to Hurricane Gilbert in the western Gulf of Mexico is investigated in this paper using the Miami Isopycnic Coordinate Ocean Model (MICOM). Three snapshots of oceanic observations indicated that a Loop Current Warm Core Eddy (LCWCE) contributed significantly to the ML heat and mass budgets. To examine the time evolution of different physical processes in the ML, MICOM is initialized with realistic, climatological, and quiescent conditions for the same realistic forcing. The ML evolves differently for the realistic background condition with the LCWCE in the domain; differences between climatological and quiescent conditions remain small. Mixed layer temperature (MLT) and ML depth (MLD) differences of up to 18C and 30 m are directly attributed to horizontal advective processes in the LCWCE regime due to preexisting velocities. Comparison of simulated temperatures using realistic conditions in the model shows improved agreement with profiler observations. Using four entrainment mixing parameterizations, the spatial and temporal ML evolution is investigated in MICOM simulations. Although the rates of simulated cooling and deepening differ for the four schemes, the overall pattern remains qualitatively similar. For the three schemes that use surfaceinduced turbulence to predict entrainment rate, the cooling pattern extends farther away from the track. Based on linear regression analysis, MLTs simulated using the bulk Richardson number closure fit the observed temperatures better than did the other schemes. Averaged surface fluxes ranged from 10% to 30% in the directly forced region, with larger values in the LCWCE regime. Overall, entrainment mixing remains the dominant mechanism in controlling the heat and mass budgets.

Collaboration


Dive into the Lynn K. Shay's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

George R. Halliwell

National Oceanic and Atmospheric Administration

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eric W. Uhlhorn

National Oceanic and Atmospheric Administration

View shared research outputs
Top Co-Authors

Avatar

Robert H. Weisberg

University of South Florida St. Petersburg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter G. Black

National Oceanic and Atmospheric Administration

View shared research outputs
Researchain Logo
Decentralizing Knowledge