Lynn Miesel
Merck & Co.
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Lynn Miesel.
Chemistry & Biology | 2009
Joann Huber; Robert G.K. Donald; Sang Ho Lee; Lisa Wang Jarantow; Michael J. Salvatore; Xin Meng; Ronald E. Painter; Russell Onishi; James Occi; Karen Dorso; Katherine Young; Young Whan Park; Stephen Skwish; Michael J. Szymonifka; Tim S. Waddell; Lynn Miesel; John W. Phillips; Terry Roemer
Methicillin-resistant Staphylococcus aureus (MRSA) is a major nosocomial and community-acquired pathogen for which few existing antibiotics are efficacious. Here we describe two structurally related synthetic compounds that potentiate beta-lactam activity against MRSA. Genetic studies indicate that these agents target SAV1754 based on the following observations: (i) it has a unique chemical hypersensitivity profile, (ii) overexpression or point mutations are sufficient to confer resistance, and (iii) genetic inactivation phenocopies the potentiating effect of these agents in combination with beta-lactams. Further, we demonstrate these agents inhibit peptidoglycan synthesis. Because SAV1754 is essential for growth and structurally related to the recently reported peptidoglycan flippase of Escherichia coli, we speculate it performs an analogous function in S. aureus. These results suggest that SAV1754 inhibitors might possess therapeutic potential alone, or in combination with beta-lactams to restore MRSA efficacy.
Expert Review of Anti-infective Therapy | 2011
Sheo B. Singh; Katherine Young; Lynn Miesel
Microbial-derived natural products have been a traditional source of antibiotics and antibiotic leads and continue to be effective sources of antibiotics today. The most important of these discoveries were made about 50 years ago. Chemical modifications of natural products discovered during those years continue to produce new clinical agents but their value is now, unfortunately, fading away owing to the exhaustion of opportunities of chemical modifications. The discovery of new natural antibiotics is directly linked to new screening technologies, particularly technologies that can help to eliminate the rediscovery of known antibiotics. In this article, we have reviewed the screening technologies from recent literature as well as originating from authors laboratories that were used for the screening of natural products. The article covers the entire spectrum of screening strategies, including classical empiric whole-cell assays to more sophisticated antisense based hypersensitive Staphylococcus aureus Fitness Test assays designed to screen all targets simultaneously. These technologies have led to the discovery of a series of natural product antibiotics, which have been summarized, including the discovery of platensimycin, platencin, nocathiacins, philipimycin, cyclothialidine and muryamycins. It is quite clear that natural products provide a tremendous opportunity to discover new antibiotics when combined with new hyper-sensitive whole-cell technologies.
Bioorganic & Medicinal Chemistry Letters | 2015
Sheo B. Singh; David E. Kaelin; Jin Wu; Lynn Miesel; Christopher M. Tan; Todd A. Black; Ravi P. Nargund; Peter T. Meinke; David B. Olsen; Armando Lagrutta; Jun Lu; Sangita Patel; Keith Rickert; Robert F. Smith; Stephen Soisson; Edward C. Sherer; Leo A. Joyce; Changqing Wei; Xuanjia Peng; Xiu Wang; Hideyuki Fukuda; Ryuta Kishii; Masaya Takei; Hisashi Takano; Mitsuhito Shibasaki; Masanobu Yajima; Akinori Nishimura; Takeshi Shibata; Yasumichi Fukuda
Novel bacterial topoisomerase inhibitors (NBTIs) represent a new class of broad-spectrum antibacterial agents targeting bacterial Gyrase A and ParC and have potential utility in combating antibiotic resistance. A series of novel oxabicyclooctane-linked NBTIs with new tricyclic-1,5-naphthyridinone left hand side moieties have been described. Compounds with a (R)-hydroxy-1,5-naphthyridinone moiety (7) showed potent antibacterial activity (e.g., Staphylococcus aureus MIC 0.25 μg/mL), acceptable Gram-positive and Gram-negative spectrum with rapidly bactericidal activity. The compound 7 showed intravenous and oral efficacy (ED50) at 3.2 and 27 mg/kg doses, respectively, in a murine model of bacteremia. Most importantly they showed significant attenuation of functional hERG activity (IC50 >170 μM). In general, lower logD attenuated hERG activity but also reduced Gram-negative activity. The co-crystal structure of a hydroxy-tricyclic NBTI bound to a DNA-gyrase complex exhibited a binding mode that show enantiomeric preference for R isomer and explains the activity and SAR. The discovery, synthesis, SAR and X-ray crystal structure of the left-hand-side tricyclic 1,5-naphthyridinone based oxabicyclooctane linked NBTIs are described.
Journal of Biological Chemistry | 2013
Gina M. Clayton; Daniel Klein; Keith W. Rickert; Sangita B. Patel; Maria Kornienko; Joan Zugay-Murphy; John C. Reid; Srivanya Tummala; Sujata Sharma; Sheo B. Singh; Lynn Miesel; Kevin J. Lumb; Stephen M. Soisson
Background: LpxC is a metal-dependent deacetylase essential for lipopolysaccharide biosynthesis. Results: The LpxC reaction product binds an extensive, conserved groove with the 2-amino group positioned in the active site. Conclusion: The product-bound LpxC structure reveals conserved ligand interactions and stabilization of a phosphate mimic of the oxyanion intermediate. Significance: LpxC structures are critical to elucidate the catalytic mechanism and design of novel antibiotics. The emergence of antibiotic-resistant strains of pathogenic bacteria is an increasing threat to global health that underscores an urgent need for an expanded antibacterial armamentarium. Gram-negative bacteria, such as Escherichia coli, have become increasingly important clinical pathogens with limited treatment options. This is due in part to their lipopolysaccharide (LPS) outer membrane components, which dually serve as endotoxins while also protecting Gram-negative bacteria from antibiotic entry. The LpxC enzyme catalyzes the committed step of LPS biosynthesis, making LpxC a promising target for new antibacterials. Here, we present the first structure of an LpxC enzyme in complex with the deacetylation reaction product, UDP-(3-O-(R-3-hydroxymyristoyl))-glucosamine. These studies provide valuable insight into recognition of substrates and products by LpxC and a platform for structure-guided drug discovery of broad spectrum Gram-negative antibiotics.
Antimicrobial Agents and Chemotherapy | 2014
Lynn Miesel; David W. Hecht; James R. Osmolski; Dale N. Gerding; Amy M. Flattery; Fangbiao Li; Jing Lan; Philip Lipari; Jon D. Polishook; Lianzhu Liang; Jenny Liu; David B. Olsen; Sheo B. Singh
ABSTRACT Clostridium difficile is the causative agent of C. difficile-associated diarrhea (CDAD), with increased risk in elderly populations. Kibdelomycin, a novel natural-product inhibitor of type II topoisomerase enzymes, was evaluated for activity against C. difficile and gastrointestinal anaerobic organisms. Toxigenic C. difficile isolates (n = 168) from U.S. hospitals and anaerobic Gram-positive and Gram-negative organisms (n = 598) from Chicago-area hospitals were tested. Kibdelomycin showed potent activity against toxigenic C. difficile (MIC90 = 0.25 μg/ml) and most Gram-positive aerobic organisms but had little activity against Bacteroides species (MIC50 > 32 μg/ml; n = 270). Potent anti-C. difficile activity was also observed in the hamster model of C. difficile colitis. Dosing at 1.6 mg/kg (twice-daily oral dose) resulted in protection from a lethal infection and a 2-log reduction in C. difficile cecal counts. A 6.25-mg/kg twice-daily oral dose completely eliminated detectable C. difficile counts in cecal contents. A single 6.25-mg/kg oral dose showed that cecal contents were exposed to the drug at >2 μM (eightfold higher than the MIC), with no significant plasma exposure. These findings support further exploration of kibdelomycin for development of an anti-C. difficile agent.
Bioorganic & Medicinal Chemistry Letters | 2015
Sheo B. Singh; David E. Kaelin; Jin Wu; Lynn Miesel; Christopher M. Tan; Charles Gill; Todd A. Black; Ravi P. Nargund; Peter T. Meinke; David B. Olsen; Armando Lagrutta; Changqing Wei; Xuanjia Peng; Xiu Wang; Hideyuki Fukuda; Ryuta Kishii; Masaya Takei; Tomoko Takeuchi; Taku Shibue; Kohei Ohata; Hisashi Takano; Shizuka Ban; Akinori Nishimura; Yasumichi Fukuda
Novel bacterial topoisomerase inhibitors (NBTIs) are a new class of broad-spectrum antibacterial agents targeting bacterial Gyrase A and ParC and have potential utility in combating antibiotic resistance. (R)-Hydroxy-1,5-naphthyridinone left-hand side (LHS) oxabicyclooctane linked pyridoxazinone right-hand side (RHS) containing NBTIs showed a potent Gram-positive antibacterial profile. SAR around the RHS moiety, including substitutions around pyridooxazinone, pyridodioxane, and phenyl propenoids has been described. A fluoro substituted pyridoxazinone showed an MIC against Staphylococcus aureus of 0.5 μg/mL with reduced functional hERG activity (IC50 333 μM) and good in vivo efficacy [ED90 12 mg/kg, intravenous (iv) and 15 mg/kg, oral (p.o.)]. A pyridodioxane-containing NBTI showed a S. aureus MIC of 0.5 μg/mL, significantly improved hERG IC50 764 μM and strong efficacy of 11 mg/kg (iv) and 5 mg/kg (p.o.). A phenyl propenoid series of compounds showed potent antibacterial activity, but also showed potent hERG binding activity. Many of the compounds in the hydroxy-tricyclic series showed strong activity against Acinetobacter baumannii, but reduced activity against Escherichia coli and Pseudomonas aeruginosa. Bicyclic heterocycles appeared to be the best RHS moiety for the hydroxy-tricyclic oxabicyclooctane linked NBTIs.
Antimicrobial Agents and Chemotherapy | 2017
Elizabeth A. Lakota; Justin C. Bader; Voon Ong; Ken Bartizal; Lynn Miesel; David R. Andes; Sujata M. Bhavnani; Christopher M. Rubino; Paul G. Ambrose; Alexander J. Lepak
ABSTRACT CD101 is a novel echinocandin with concentration-dependent fungicidal activity in vitro and a long half-life (∼133 h in humans, ∼70 to 80 h in mice). Given these characteristics, it is likely that the shape of the CD101 exposure (i.e., the time course of CD101 concentrations) influences efficacy. To test this hypothesis, doses which produce the same total area under the concentration-time curve (AUC) were administered to groups of neutropenic ICR mice infected with Candida albicans R303 using three different schedules. A total CD101 dose of 2 mg/kg was administered as a single intravenous (i.v.) dose or in equal divided doses of either 1 mg/kg twice weekly or 0.29 mg/kg/day over 7 days. The studies were performed using a murine disseminated candidiasis model. Animals were euthanized at 168 h following the start of treatment. Fungi grew well in the no-treatment control group and showed variable changes in fungal density in the treatment groups. When the CD101 AUC from 0 to 168 h (AUC0–168) was administered as a single dose, a >2 log10 CFU reduction from the baseline at 168 h was observed. When twice-weekly and daily regimens with similar AUC values were administered, net fungal stasis and a >1 log10 CFU increase from the baseline were observed, respectively. These data support the hypothesis that the shape of the CD101 AUC influences efficacy. Thus, CD101 administered once per week demonstrated a greater degree of fungal killing than the same dose divided into twice-weekly or daily regimens.
Bioorganic & Medicinal Chemistry Letters | 2015
Sheo B. Singh; David E. Kaelin; Peter T. Meinke; Jin Wu; Lynn Miesel; Christopher M. Tan; David B. Olsen; Armando Lagrutta; Hideyuki Fukuda; Ryuta Kishii; Masaya Takei; Tomoko Takeuchi; Hisashi Takano; Kohei Ohata; Haruaki Kurasaki; Akinori Nishimura; Takeshi Shibata; Yasumichi Fukuda
Oxabicyclooctane linked novel bacterial topoisomerase inhibitors (NBTIs) are new class of recently reported broad-spectrum antibacterial agents. They target bacterial DNA gyrase and topoisomerase IV and bind to a site different than quinolones. They show no cross-resistance to known antibiotics and provide opportunity to combat drug-resistant bacteria. A structure activity relationship of the C-2 substituted ether analogs of 1,5-naphthyridine oxabicyclooctane-linked NBTIs are described. Synthesis and antibacterial activities of a total of 63 analogs have been summarized representing alkyl, cyclo alkyl, fluoro alkyl, hydroxy alkyl, amino alkyl, and carboxyl alkyl ethers. All compounds were tested against three key strains each of Gram-positive and Gram-negative bacteria as well as for hERG binding activities. Many key compounds were also tested for the functional hERG activity. Six compounds were evaluated for efficacy in a murine bacteremia model of Staphylococcus aureus infection. Significant tolerance for the ether substitution (including polar groups such as amino and carboxyl) at C-2 was observed for S. aureus activity however the same was not true for Enterococcus faecium and Gram-negative strains. Reduced clogD generally showed reduced hERG activity and improved in vivo efficacy but was generally associated with decreased overall potency. One of the best compounds was hydroxy propyl ether (16), which mainly retained the potency, spectrum and in vivo efficacy of AM8085 associated with the decreased hERG activity and improved physical property.
Bioorganic & Medicinal Chemistry Letters | 2015
Sheo B. Singh; David E. Kaelin; Jin Wu; Lynn Miesel; Christopher M. Tan; Peter T. Meinke; David B. Olsen; Armando Lagrutta; Changqing Wei; Yonggang Liao; Xuanjia Peng; Xiu Wang; Hideyuki Fukuda; Ryuta Kishii; Masaya Takei; Masanobu Yajima; Taku Shibue; Takeshi Shibata; Kohei Ohata; Akinori Nishimura; Yasumichi Fukuda
Oxabicyclooctane linked 1,5-naphthyridinyl-pyridoxazinones are novel broad-spectrum bacterial topoisomerase inhibitors (NBTIs) targeting bacterial DNA gyrase and topoisomerase IV at a site different than quinolones. Due to lack of cross-resistance to known antibiotics they present excellent opportunity to combat drug-resistant bacteria. A structure activity relationship of the pyridoxazinone moiety is described in this Letter. Chemical synthesis and activities of NBTIs with substitutions at C-3, C-4 and C-7 of the pyridoxazinone moiety with halogens, alkyl groups and methoxy group has been described. In addition, substitutions of the linker NH proton and its transformation into amide analogs of AM-8085 and AM-8191 have been reported. Fluoro, chloro, and methyl groups at C-3 of the pyridoxazinone moiety retained the potency and spectrum. In addition, a C-3 fluoro analog showed 4-fold better oral efficacy (ED50 3.9 mg/kg) as compared to the parent AM-8085 in a murine bacteremia model of infection of Staphylococcus aureus. Even modest polarity (e.g., methoxy) is not tolerated at C-3 of the pyridoxazinone unit. The basicity and NH group of the linker is important for the activity when CH2 is at the linker position-8. However, amides (with linker position-8 ketone) with a position-7 NH or N-methyl group retained potency and spectrum suggesting that neither basicity nor hydrogen-donor properties of the linker amide NH is essential for the activity. This would suggest likely an altered binding mode of the linker position-7,8 amide containing compounds. The amides showed highly improved hERG (functional IC50 >30 μM) profile.
MedChemComm | 2015
Sheo B. Singh; David E. Kaelin; Jin Wu; Lynn Miesel; Christopher M. Tan; Peter T. Meinke; David B. Olsen; Armando Lagrutta; Changqing Wei; Yonggang Liao; Xuanjia Peng; Xiu Wang; Hideyuki Fukuda; Ryuta Kishii; Masaya Takei; Takeshi Shibata; Tomoko Takeuchi; Kohei Ohata; Akinori Nishimura; Yasumichi Fukuda
Novel bacterial topoisomerase inhibitors (NBTIs) are a recent class of broad-spectrum antibacterial agents targeting bacterial DNA gyrase and topoisomerase IV at a site distinct from quinolone binding. They are not cross-resistant to known antibiotics and present an excellent opportunity to combat drug-resistant bacteria. We have recently reported a series of oxabicyclooctane-linked inhibitors describing the structure–activity relationship around left-hand-side and right-hand-side moieties. In this report, SAR of the benzylic (C-1) and homobenzylic (C-2) positions of the linker moiety has been described. Single and double substitutions by polar and charged (OH, NH2, CO2H) and non-polar (F, Me) groups indicated that a hydroxy substitution at the benzylic or homobenzylic position is preferred for the potency and spectrum. The C-1,2-dihydroxy group was not effective. Amino substitution at C-2 provides a marginal advantage to the Gram-negative activity. It appears that the α-hydroxy enantiomer was preferred. Despite the beneficial effects of C-1 hydroxy–C-1 alkyl substitution in the tricyclics (particularly for attenuation of hERG), methyl tert-carbinols either at C-1 or C-2 had a detrimental effect on the activity without having much effect on the hERG signal. Mono-hydroxy compounds at C-1 and C-2 showed improved intravenous (ED50 2–4 mg kg−1) and oral (ED50 2–5 mg kg−1) efficacy in a mouse model of bacteremia of S. aureus infection.