Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sheo B. Singh is active.

Publication


Featured researches published by Sheo B. Singh.


Nature | 2006

Platensimycin is a selective FabF inhibitor with potent antibiotic properties

Jun Wang; Stephen M. Soisson; Katherine Young; Wesley L. Shoop; Srinivas Kodali; Andrew Galgoci; Ronald E. Painter; Gopalakrishnan Parthasarathy; Yui S. Tang; Richard D. Cummings; Sookhee Ha; Karen Dorso; Mary Motyl; Hiranthi Jayasuriya; John G. Ondeyka; Kithsiri Herath; Chaowei Zhang; Lorraine D. Hernandez; John J. Allocco; Angela Basilio; José R. Tormo; Olga Genilloud; Francisca Vicente; Fernando Pelaez; Lawrence F. Colwell; Sang Ho Lee; Bruce Michael; Thomas J. Felcetto; Charles Gill; Lynn L. Silver

Bacterial infection remains a serious threat to human lives because of emerging resistance to existing antibiotics. Although the scientific community has avidly pursued the discovery of new antibiotics that interact with new targets, these efforts have met with limited success since the early 1960s. Here we report the discovery of platensimycin, a previously unknown class of antibiotics produced by Streptomyces platensis. Platensimycin demonstrates strong, broad-spectrum Gram-positive antibacterial activity by selectively inhibiting cellular lipid biosynthesis. We show that this anti-bacterial effect is exerted through the selective targeting of β-ketoacyl-(acyl-carrier-protein (ACP)) synthase I/II (FabF/B) in the synthetic pathway of fatty acids. Direct binding assays show that platensimycin interacts specifically with the acyl-enzyme intermediate of the target protein, and X-ray crystallographic studies reveal that a specific conformational change that occurs on acylation must take place before the inhibitor can bind. Treatment with platensimycin eradicates Staphylococcus aureus infection in mice. Because of its unique mode of action, platensimycin shows no cross-resistance to other key antibiotic-resistant strains tested, including methicillin-resistant S. aureus, vancomycin-intermediate S. aureus and vancomycin-resistant enterococci. Platensimycin is the most potent inhibitor reported for the FabF/B condensing enzymes, and is the only inhibitor of these targets that shows broad-spectrum activity, in vivo efficacy and no observed toxicity.


Cellular and Molecular Life Sciences | 1989

Isolation and structure of the strong cell growth and tubulin inhibitor combretastatin A-4

George R. Pettit; Sheo B. Singh; Ernest Hamel; Chii M. Lin; D. S. Alberts; D. Garcia-Kendal

The African treeCombretum caffrum (Combretaceae) has been found to contain a powerful inhibitor of tubulin polymerization (IC502–3 μM), the growth of murine lymphocytic leukemia (L 1210 and P 388 with ED50≈0.003 μM and human colon cancer cell lines [(e.g. LoVo (ED50=0.005 μg/ml), HT29 (ED50 0.02 μg/ml, Colo 205 (ED50=0.07 μg/ml), DLD-1 (ED50=0.005 μg/ml) and HCT-15 (ED50=0.0009 μg/ml)] designated combretastatin A-4 (1c). The structure assigned by spectral techniques was confirmed by synthesis.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Discovery of platencin, a dual FabF and FabH inhibitor with in vivo antibiotic properties.

Jun Wang; Srinivas Kodali; Sang Ho Lee; Andrew Galgoci; Ronald E. Painter; Karen Dorso; Fred Racine; Mary Motyl; Lorraine D. Hernandez; Elizabeth Tinney; Steven L. Colletti; Kithsiri Herath; Richard D. Cummings; Oscar Salazar; Ignacio González; Angela Basilio; Francisca Vicente; Olga Genilloud; Fernando Pelaez; Hiranthi Jayasuriya; Katherine Young; Doris F. Cully; Sheo B. Singh

Emergence of bacterial resistance is a major issue for all classes of antibiotics; therefore, the identification of new classes is critically needed. Recently we reported the discovery of platensimycin by screening natural product extracts using a target-based whole-cell strategy with antisense silencing technology in concert with cell free biochemical validations. Continued screening efforts led to the discovery of platencin, a novel natural product that is chemically and biologically related but different from platensimycin. Platencin exhibits a broad-spectrum Gram-positive antibacterial activity through inhibition of fatty acid biosynthesis. It does not exhibit cross-resistance to key antibiotic resistant strains tested, including methicillin-resistant Staphylococcus aureus, vancomycin-intermediate S. aureus, and vancomycin-resistant Enterococci. Platencin shows potent in vivo efficacy without any observed toxicity. It targets two essential proteins, β-ketoacyl-[acyl carrier protein (ACP)] synthase II (FabF) and III (FabH) with IC50 values of 1.95 and 3.91 μg/ml, respectively, whereas platensimycin targets only FabF (IC50 = 0.13 μg/ml) in S. aureus, emphasizing the fact that more antibiotics with novel structures and new modes of action can be discovered by using this antisense differential sensitivity whole-cell screening paradigm.


Antimicrobial Agents and Chemotherapy | 2006

Discovery of FabH/FabF Inhibitors from Natural Products

Katherine Young; Hiranthi Jayasuriya; John G. Ondeyka; Kithsiri Herath; Chaowei Zhang; Srinivas Kodali; Andrew Galgoci; Ronald E. Painter; Vickie Brown-Driver; Robert T. Yamamoto; Lynn L. Silver; Yingcong Zheng; Judith I. Ventura; Janet M. Sigmund; Sookhee Ha; Angela Basilio; Francisca Vicente; José R. Tormo; Fernando Pelaez; Phil Youngman; Doris F. Cully; John F. Barrett; Dennis M. Schmatz; Sheo B. Singh; Jun Wang

ABSTRACT Condensing enzymes are essential in type II fatty acid synthesis and are promising targets for antibacterial drug discovery. Recently, a new approach using a xylose-inducible plasmid to express antisense RNA in Staphylococcus aureus has been described; however, the actual mechanism was not delineated. In this paper, the mechanism of decreased target protein production by expression of antisense RNA was investigated using Northern blotting. This revealed that the antisense RNA acts posttranscriptionally by targeting mRNA, leading to 5′ mRNA degradation. Using this technology, a two-plate assay was developed in order to identify FabF/FabH target-specific cell-permeable inhibitors by screening of natural product extracts. Over 250,000 natural product fermentation broths were screened and then confirmed in biochemical assays, yielding a hit rate of 0.1%. All known natural product FabH and FabF inhibitors, including cerulenin, thiolactomycin, thiotetromycin, and Tü3010, were discovered using this whole-cell mechanism-based screening approach. Phomallenic acids, which are new inhibitors of FabF, were also discovered. These new inhibitors exhibited target selectivity in the gel elongation assay and in the whole-cell-based two-plate assay. Phomallenic acid C showed good antibacterial activity, about 20-fold better than that of thiolactomycin and cerulenin, against S. aureus. It exhibited a spectrum of antibacterial activity against clinically important pathogens including methicillin-resistant Staphylococcus aureus, Bacillus subtilis, and Haemophilus influenzae.


Journal of Biological Chemistry | 2003

Discovery of a small molecule that inhibits cell division by blocking FtsZ, a novel therapeutic target of antibiotics

Jun Wang; Andrew Galgoci; Srinivas Kodali; Kithsiri Herath; Hiranthi Jayasuriya; Karen Dorso; Francisca Vicente; Antonio Gonzalez; Doris F. Cully; David Bramhill; Sheo B. Singh

The emergence of bacterial resistance to antibiotics is a major health problem and, therefore, it is critical to develop new antibiotics with novel modes of action. FtsZ, a tubulin-like GTPase, plays an essential role in bacterial cell division, and its homologs are present in almost all eubacteria and archaea. During cell division, FtsZ forms polymers in the presence of GTP that recruit other division proteins to make the cell division apparatus. Therefore, inhibition of FtsZ polymerization will prevent cells from dividing, leading to cell death. Using a fluorescent FtsZ polymerization assay, the screening of >100,000 extracts of microbial fermentation broths and plants followed by fractionation led to the identification of viriditoxin, which blocked FtsZ polymerization with an IC50 of 8.2 μg/ml and concomitant GTPase inhibition with an IC50 of 7.0 μg/ml. That the mode of antibacterial action of viriditoxin is via inhibition of FtsZ was confirmed by the observation of its effects on cell morphology, macromolecular synthesis, DNA-damage response, and increased minimum inhibitory concentration as a result of an increase in the expression of the FtsZ protein. Viriditoxin exhibited broad-spectrum antibacterial activity against clinically relevant Gram-positive pathogens, including methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococci, without affecting the viability of eukaryotic cells.


Journal of Biological Chemistry | 2002

A potent synthetic LXR agonist is more effective than cholesterol-loading at inducing ABCA1 mRNA and stimulating cholesterol efflux

Carl P. Sparrow; Joanne Baffic; My-Hanh Lam; Erik G. Lund; Alan D. Adams; Xuan Fu; Nancy S. Hayes; A. Brian Jones; Karen L. MacNaul; John G. Ondeyka; Sheo B. Singh; Jianhua Wang; Gaochao Zhou; David E. Moller; Samuel D. Wright; John G. Menke

The LXR nuclear receptors are intracellular sensors of cholesterol excess and are activated by various oxysterols. LXRs have been shown to regulate multiple genes of lipid metabolism, including ABCA1 (formerly known asABC1). ABCA1 is a lipid pump that effluxes cholesterol and phospholipid out of cells. ABCA1 deficiency causes extremely low high density lipoprotein (HDL) levels, demonstrating the importance of ABCA1 in the formation of HDL. The present work shows that the acetyl-podocarpic dimer (APD) is a potent, selective agonist for both LXRα (NR1H3) and LXRβ (NR1H2). In transient transactivation assays, APD was ∼1000-fold more potent, and yielded ∼6-fold greater maximal stimulation, than the widely used LXR agonist 22-(R)-hydroxycholesterol. APD induced ABCA1mRNA levels, and increased efflux of both cholesterol and phospholipid, from multiple cell types. Gas chromatography-mass spectrometry measurements demonstrated that APD stimulated efflux of endogenous cholesterol, eliminating any possible artifacts of cholesterol labeling. For both mRNA induction and stimulation of cholesterol efflux, APD was found to be more effective than was cholesterol loading. Taken together, these data show that APD is a more effective LXR agonist than endogenous oxysterols. LXR agonists may therefore be useful for the prevention and treatment of atherosclerosis, especially in the context of low HDL levels.


Tetrahedron Letters | 1996

Apicidins: Novel cyclic tetrapeptides as coccidiostats and antimalarial agents from Fusarium pallidoroseum

Sheo B. Singh; Deborah L. Zink; Jon D. Polishook; Anne W. Dombrowski; Sandra J. Darkin-Rattray; Dennis M. Schmatz; Michael A. Goetz

Abstract Apicidin is a cyclic tetrapeptide [cyclo-(N-O-Methyl-L-Trp-L-Ile-D-Pip-L-2-amino-8-oxo-decanoyl)] isolated from Fusarium pallidoroseum by bioassay guided separation. It is a potent inhibitor of apicomplexan histone deacetylase (IC50 1–2 nM), a broad spectrum antiparasitic agent in vitro against apicomplexan parasites and has shown in vivo efficacy against Plasmodium berghei malaria. Isolation, structure and stereochemistry are discussed.


Tetrahedron Letters | 1998

Equisetin and a novel opposite stereochemical homolog phomasetin, two fungal metabolites as inhibitors of HIV-1 integrase

Sheo B. Singh; Deborah L. Zink; Michael A. Goetz; Anne W. Dombrowski; Jon D. Polishook; Daria J. Hazuda

Abstract Integration is an essential step in HIV replication and is catalyzed by an enzyme called integrase. We have isolated equisetin ( 1a ), and a novel opposite stereochemical homolog, phomasetin ( 2a ), from Fusarium heterosporum and a Phoma sp. respectively. They inhibit the invitro recombinant integrase enzyme with IC 50 values of 7–20 μM. Unlike known inhibitors, these compounds also inhibit the integration reactions catalyzed by preintegration complexes isolated from HIV-1 infected cells.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Antidiabetic and antisteatotic effects of the selective fatty acid synthase (FAS) inhibitor platensimycin in mouse models of diabetes

Margaret Wu; Sheo B. Singh; Jun Wang; Christine C. Chung; Gino Salituro; Bindhu V. Karanam; Sang Ho Lee; Maryann Powles; Kenneth Ellsworth; Corey N. Miller; Robert W. Myers; Michael R. Tota; Bei B. Zhang; Cai Li

Platensimycin (PTM) is a recently discovered broad-spectrum antibiotic produced by Streptomyces platensis. It acts by selectively inhibiting the elongation-condensing enzyme FabF of the fatty acid biosynthesis pathway in bacteria. We report here that PTM is also a potent and highly selective inhibitor of mammalian fatty acid synthase. In contrast to two agents, C75 and cerulenin, that are widely used as inhibitors of mammalian fatty acid synthase, platensimycin specifically inhibits fatty acid synthesis but not sterol synthesis in rat primary hepatocytes. PTM preferentially concentrates in liver when administered orally to mice and potently inhibits hepatic de novo lipogenesis, reduces fatty acid oxidation, and increases glucose oxidation. Chronic administration of platensimycin led to a net reduction in liver triglyceride levels and improved insulin sensitivity in db/+ mice fed a high-fructose diet. PTM also reduced ambient glucose levels in db/db mice. These results provide pharmacological proof of concept of inhibiting fatty acid synthase for the treatment of diabetes and related metabolic disorders in animal models.


Journal of Biological Chemistry | 2005

Determination of Selectivity and Efficacy of Fatty Acid Synthesis Inhibitors

Srinivas Kodali; Andrew Galgoci; Katherine Young; Ronald E. Painter; Lynn L. Silver; Kithsiri Herath; Sheo B. Singh; Doris F. Cully; John F. Barrett; Dennis M. Schmatz; Jun Wang

Type II fatty acid synthesis (FASII) is essential to bacterial cell viability and is a promising target for the development of novel antibiotics. In the past decade, a few inhibitors have been identified for this pathway, but none of them lend themselves to drug development. To find better inhibitors that are potential drug candidates, we developed a high throughput assay that identifies inhibitors simultaneously against multiple targets within the FASII pathway of most bacterial pathogens. We demonstrated that the inverse t½ value of the FASII enzyme-catalyzed reaction gives a measure of FASII activity. The Km values of octanoyl-CoA and lauroyl-CoA were determined to be 1.1 ± 0.3 and 10 ± 2.7 μm in Staphylococcus aureus and Bacillus subtilis, respectively. The effects of free metals and reducing agents on enzyme activity showed an inhibition hierarchy of Zn2+ > Ca2+ > Mn2+ > Mg2+; no inhibition was found with β-mercaptoethanol or dithiothreitol. We used this assay to screen the natural product libraries and isolated an inhibitor, bischloroanthrabenzoxocinone (BABX) with a new structure. BABX showed IC50 values of 11.4 and 35.3 μg/ml in the S. aureus and Escherichia coli FASII assays, respectively, and good antibacterial activities against S. aureus and permeable E. coli strains with minimum inhibitory concentrations ranging from 0.2 to 0.4 μg/ml. Furthermore, the effectiveness, selectivity, and the in vitro and in vivo correlations of BABX as well as other fatty acid inhibitors were elucidated, which will aid in future drug discovery.

Collaboration


Dive into the Sheo B. Singh's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gerald F. Bills

University of Texas Health Science Center at Houston

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge