Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lynn Verstrepen is active.

Publication


Featured researches published by Lynn Verstrepen.


Cellular and Molecular Life Sciences | 2008

TLR-4, IL-1R and TNF-R signaling to NF-κB: variations on a common theme

Lynn Verstrepen; Tine Bekaert; Tieu-Lan Chau; Jan Tavernier; Alain Chariot; Rudi Beyaert

Abstract.Toll-like receptors (TLRs) as well as the receptors for tumor necrosis factor (TNF-R) and interleukin-1 (IL-1R) play an important role in innate immunity by regulating the activity of distinct transcription factors such as nuclear factor-κB (NF-κB). TLR, IL-1R and TNF-R signaling to NF-κB converge on a common IκB kinase complex that phosphorylates the NF-κB inhibitory protein IκBα. However, upstream signaling components are in large part receptor-specific. Nevertheless, the principles of signaling are similar, involving the recruitment of specific adaptor proteins and the activation of kinase cascades in which protein-protein interactions are controlled by poly-ubiquitination. In this review, we will discuss our current knowledge of NF-κB signaling in response to TLR-4, TNF-R and IL-1R stimulation, with a special focus on the similarities and dissimilarities among these pathways.


Biochemical Pharmacology | 2009

ABINs: A20 binding inhibitors of NF-kappa B and apoptosis signaling.

Lynn Verstrepen; Isabelle Carpentier; Kelly Verhelst; Rudi Beyaert

ABINs have been described as three different proteins (ABIN-1, ABIN-2, ABIN-3) that bind the ubiquitin-editing nuclear factor-kappaB (NF-kappaB) inhibitor protein A20 and which show limited sequence homology. Overexpression of ABINs inhibits NF-kappaB activation by tumor necrosis factor (TNF) and several other stimuli. Similar to A20, ABIN-1 and ABIN-3 expression is NF-kappaB dependent, implicating a potential role for the A20/ABIN complex in the negative feedback regulation of NF-kappaB activation. Adenoviral gene transfer of ABIN-1 has been shown to reduce NF-kappaB activation in mouse liver and lungs. However, ABIN-1 as well as ABIN-2 deficient mice exhibit only slightly increased or normal NF-kappaB activation, respectively, possibly reflecting redundant NF-kappaB inhibitory activities of multiple ABINs. Other functions of ABINs might be non-redundant. For example, ABIN-1 shares with A20 the ability to inhibit TNF-induced apoptosis and as a result ABIN-1 deficient mice die during embryogenesis due to TNF-dependent fetal liver apoptosis. On the other hand, ABIN-2 is required for optimal TPL-2 dependent extracellularly regulated kinase activation in macrophages treated with TNF or Toll-like receptor ligands. ABINs have recently been shown to contain an ubiquitin-binding domain that is essential for their NF-kappaB inhibitory and anti-apoptotic activities. In this context, ABINs were proposed to function as adaptors between ubiquitinated proteins and other regulatory proteins. Alternatively, ABINs might disrupt signaling complexes by competing with other ubiquitin-binding proteins for the binding to specific ubiquitinated targets. Altogether, these findings implicate an important role for ABINs in the regulation of immunity and tissue homeostasis.


The EMBO Journal | 2008

Inflammatory cardiac valvulitis in TAX1BP1‐deficient mice through selective NF‐κB activation

Hidekatsu Iha; Jean-Marie Peloponese; Lynn Verstrepen; Grzegorz Zapart; Fumiyo Ikeda; C Dahlem Smith; Matthew F. Starost; Venkat S. R. K. Yedavalli; Karen Heyninck; Ivan Dikic; Rudi Beyaert; Kuan-Teh Jeang

Nuclear factor kappa B (NF‐κB) is a key mediator of inflammation. Unchecked NF‐κB signalling can engender autoimmune pathologies and cancers. Here, we show that Tax1‐binding protein 1 (TAX1BP1) is a negative regulator of TNF‐α‐ and IL‐1β‐induced NF‐κB activation and that binding to mono‐ and polyubiquitin by a ubiquitin‐binding Zn finger domain in TAX1BP1 is needed for TRAF6 association and NF‐κB inhibition. Mice genetically knocked out for TAX1BP1 are born normal, but develop age‐dependent inflammatory cardiac valvulitis, die prematurely, and are hypersensitive to low doses of TNF‐α and IL‐1β. TAX1BP1−/− cells are more highly activated for NF‐κB than control cells when stimulated with TNF‐α or IL‐1β. Mechanistically, TAX1BP1 acts in NF‐κB signalling as an essential adaptor between A20 and its targets.


Biochemical Pharmacology | 2010

Expression, biological activities and mechanisms of action of A20 (TNFAIP3).

Lynn Verstrepen; Kelly Verhelst; Geert van Loo; Isabelle Carpentier; Steven C. Ley; Rudi Beyaert

A20 (also known as TNFAIP3) is a cytoplasmic protein that plays a key role in the negative regulation of inflammation and immunity. Polymorphisms in the A20 gene locus have been identified as risk alleles for multiple human autoimmune diseases, and A20 has also been proposed to function as a tumor suppressor in several human B-cell lymphomas. A20 expression is strongly induced by multiple stimuli, including the proinflammatory cytokines TNF and IL-1, and microbial products that trigger pathogen recognition receptors, such as Toll-like receptors. A20 functions in a negative feedback loop, which mediates its inhibitory functions by downregulating key proinflammatory signaling pathways, including those controlling NF-κB- and IRF3-dependent gene expression. Activation of these transcription factors is controlled by both K48- and K63- polyubiquitination of upstream signaling proteins, respectively triggering proteasome-mediated degradation or interaction with other signaling proteins. A20 turns off NF-κB and IRF3 activation by modulating both types of ubiquitination. Induction of K48-polyubiquitination by A20 involves its C-terminal zinc-finger ubiquitin-binding domain, which may promote interaction with E3 ligases, such as Itch and RNF11 that are involved in mediating A20 inhibitory functions. A20 is thought to promote de-ubiquitination of K63-polyubiquitin chains either directly, due to its N-terminal deubiquitinase domain, or by disrupting the interaction between E3 and E2 enzymes that catalyze K63-polyubiquitination. A20 is subject to different mechanisms of regulation, including phosphorylation, proteolytic processing, and association with ubiquitin binding proteins. Here we review the expression and biological activities of A20, as well as the underlying molecular mechanisms.


The EMBO Journal | 2012

A20 inhibits LUBAC-mediated NF-κB activation by binding linear polyubiquitin chains via its zinc finger 7

Kelly Verhelst; Isabelle Carpentier; Marja Kreike; Laura Meloni; Lynn Verstrepen; Tobias Kensche; Ivan Dikic; Rudi Beyaert

Linear polyubiquitination of proteins has recently been implicated in NF‐κB signalling and is mediated by the linear ubiquitin chain assembly complex (LUBAC), consisting of HOIL‐1, HOIP and Sharpin. However, the mechanisms that regulate linear ubiquitination are still unknown. Here, we show that A20 is rapidly recruited to NEMO and LUBAC upon TNF stimulation and that A20 inhibits LUBAC‐induced NF‐κB activation via its C‐terminal zinc‐finger 7 (ZF7) domain. Expression of a polypeptide corresponding to only ZF7 was sufficient to inhibit TNF‐induced NF‐κB activation. Both A20 and ZF7 can form a complex with NEMO and LUBAC, and are able to prevent the TNF‐induced binding of NEMO to LUBAC. Finally, we show that ZF7 preferentially binds linear polyubiquitin chains in vitro, indicating A20–ZF7 as a novel linear ubiquitin‐binding domain (LUBID). We thus propose a model in which A20 inhibits TNF‐ and LUBAC‐induced NF‐κB signalling by binding to linear polyubiquitin chains via its seventh zinc finger, which prevents the TNF‐induced interaction between LUBAC and NEMO.


Journal of Biological Chemistry | 2007

LIND/ABIN-3 Is a Novel Lipopolysaccharide-inducible Inhibitor of NF-κB Activation

Andy Wullaert; Lynn Verstrepen; Sofie Van Huffel; Sigrid Cornelis; Marja Kreike; Mira Haegman; Karim El Bakkouri; Matthew A. Sanders; Kelly Verhelst; Isabelle Carpentier; Jean-Marc Cavaillon; Karen Heyninck; Rudi Beyaert

Recognition of lipopolysaccharide (LPS) by Toll-like receptor (TLR)4 initiates an intracellular signaling pathway leading to the activation of nuclear factor-κB (NF-κB). Although LPS-induced activation of NF-κB is critical to the induction of an efficient immune response, excessive or prolonged signaling from TLR4 can be harmful to the host. Therefore, the NF-κB signal transduction pathway demands tight regulation. In the present study, we describe the human protein Listeria INDuced (LIND) as a novel A20-binding inhibitor of NF-κB activation (ABIN) that is related to ABIN-1 and -2 and, therefore, is further referred to as ABIN-3. Similar to the other ABINs, ABIN-3 binds to A20 and inhibits NF-κB activation induced by tumor necrosis factor, interleukin-1, and 12-O-tetradecanoylphorbol-13-acetate. However, unlike the other ABINs, constitutive expression of ABIN-3 could not be detected in different human cells. Treatment of human monocytic cells with LPS strongly induced ABIN-3 mRNA and protein expression, suggesting a role for ABIN-3 in the LPS/TLR4 pathway. Indeed, ABIN-3 overexpression was found to inhibit NF-κB-dependent gene expression in response to LPS/TLR4 at a level downstream of TRAF6 and upstream of IKKβ. NF-κB inhibition was mediated by the ABIN-homology domain 2 and was independent of A20 binding. Moreover, in vivo adenoviral gene transfer of ABIN-3 in mice reduced LPS-induced NF-κB activity in the liver, thereby partially protecting mice against LPS/d-(+)-galactosamine-inducedmortality. Taken together, these results implicate ABIN-3 as a novel negative feedback regulator of LPS-induced NF-κB activation.


Biochemical Pharmacology | 2013

IκB kinase ɛ (IKKɛ): A therapeutic target in inflammation and cancer

Kelly Verhelst; Lynn Verstrepen; Isabelle Carpentier; Rudi Beyaert

Abstract The innate immune system forms our first line of defense against invading pathogens and relies for a major part on the activation of two transcription factors, NF-κB and IRF3. Signaling pathways that activate these transcription factors are intertwined at the level of the canonical IκB kinases (IKKα, IKKβ) and non-canonical IKK-related kinases (IKKɛ, TBK1). Recently, significant progress has been made in understanding the function and mechanism of action of IKKɛ in immune signaling. In addition, IKKɛ impacts on cell proliferation and transformation, and is thereby also classified as an oncogene. Studies with IKKɛ knockout mice have illustrated a key role for IKKɛ in inflammatory and metabolic diseases. In this review we will highlight the mechanisms by which IKKɛ impacts on signaling pathways involved in disease development and discuss its potential as a novel therapeutic target.


Biochemical Pharmacology | 2014

Receptor proximal kinases in NF-κB signaling as potential therapeutic targets in cancer and inflammation

Lynn Verstrepen; Rudi Beyaert

Many signaling pathways leading to activation of transcription factors and gene expression are characterized by phosphorylation events mediated by specific kinases. The transcription factor NF-κB plays a key role in multiple cellular processes, including immune signaling, inflammation, development, proliferation and survival. Dysregulated NF-κB activation is associated with autoimmunity, chronic inflammation and cancer. Activation of NF-κB requires IκB kinase (IKK)α or β, the activity of which is regulated via phosphorylation by specific IKK kinases and by autophosphorylation. Receptor specificity is further obtained by the use of multiple upstream receptor proximal kinases. We review the identities of several IKK regulatory kinases as well as the proposed molecular mechanisms. In addition, we discuss the potential for therapeutic targeting of some of these kinases in the context of inflammatory diseases and cancer.


Biochemical Pharmacology | 2016

TRAF2 multitasking in TNF receptor-induced signaling to NF-κB, MAP kinases and cell death.

Alice Borghi; Lynn Verstrepen; Rudi Beyaert

Tumor Necrosis Factor (TNF) is a potent inflammatory cytokine that exerts its functions through the activation of two distinct receptors, TNFR1 and TNFR2. Both receptors can activate canonical NF-κB and JNK MAP kinase signaling, while TNFR2 can also activate non-canonical NF-κB signaling, leading to numerous changes in gene expression that drive inflammation, cell proliferation and cell survival. On the other hand, TNFR1 also activates signaling pathways leading to cell death by either apoptosis or necroptosis, depending on the cellular context. A key player in TNFR1- and TNFR2-induced signaling is the RING finger protein TRAF2, which is recruited to both receptors upon their stimulation. TRAF2 exerts multiple receptor-specific functions but also mediates cross-talk between TNFR1 and TNFR2, dictating the outcome of TNF stimulation. In this review, we provide an overview of the positive and negative regulatory role of TRAF2 in different TNFR1 and TNFR2 signaling pathways. We discuss the underlying molecular mechanism of action, distinguishing between TRAF2 scaffold and E3 ubiquitin ligase functions, and the regulation of TRAF2 by specific post-translational modifications. Finally, we elaborate on some possible strategies to modulate TRAF2 function in the context of therapeutic targeting in autoimmunity and cancer.


Trends in Biochemical Sciences | 2011

TAX1BP1, a ubiquitin-binding adaptor protein in innate immunity and beyond

Lynn Verstrepen; Kelly Verhelst; Isabelle Carpentier; Rudi Beyaert

The innate immune system senses and protects against invading microorganisms and endogenous danger signals by triggering inflammatory and antimicrobial responses. However, dysregulation of these pathways, which involve the transcription factors nuclear factor-κB (NF-κB) and interferon regulatory factor (IRF) 3, can lead to severe inflammatory diseases. Tax1-binding protein 1 (TAX1BP1) plays a key role in the negative regulation of NF-κB and IRF3 signaling by acting in concert with the ubiquitin-editing enzyme A20. In addition to regulating A20 function in anti-inflammatory and antiviral signaling pathways, TAX1BP1 also coordinates its antiapoptotic activities. Moreover, TAX1BP1 can also function as a transcriptional coactivator for nuclear receptors and viral transactivators. In this review, we discuss these findings in light of the emerging role of TAX1BP1 as a ubiquitin-binding adaptor protein.

Collaboration


Dive into the Lynn Verstrepen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge