Lynne A. Oland
University of Arizona
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Lynne A. Oland.
Journal of Neurobiology | 1996
Lynne A. Oland; Leslie P. Tolbert
The antennal system of the moth Manduca sexta is a useful model for studies of the development of olfactory glomeruli, the complex synaptic structures that typically underlie the initial processing of olfactory input in vertebrates and invertebrates. In this review, we summarize cellular events in the construction of glomeruli in Manduca and highlight experiments that reveal factors that influence glomerulus development. By methodically manipulating each of various cell types, both neuronal and glial, that contribute to glomerular architecture, we have found that: olfactory receptor axons lay a template for developing glomeruli, stabilization of the template by glial cells is necessary to permit subsequent steps in development of the glomeruli, and the hormone that regulates adult development causes production of adequate numbers of glial cells. Neither electrical activity nor the presence of a serotonin-containing neuron that persists throughout development is required for a glomerular pattern to develop; these factors might, however, influence the synaptic organization of individual glomeruli.
Trends in Neurosciences | 1989
Leslie P. Tolbert; Lynne A. Oland
Intercellular interactions are critical in the development of the nervous system. In the olfactory system of a moth, sensory axons induce the formation of large synaptic glomeruli, each surrounded by a glial envelope, in the antennal lobe of the brain. During development, the sensory axons cause changes in glial shape and disposition one day before glomeruli are recognized. Early removal of glial cells prevents the development of glomeruli despite the presence of afferent axons. Thus, the glial cells appear to play a role as intermediaries in the induction of glomeruli by afferent axons. Recent findings in the mammalian somatosensory cortex suggest a similar role for glia there.
The Journal of Comparative Neurology | 1996
Patricia M. Baumann; Lynne A. Oland; Leslie P. Tolbert
Odor information is processed in spherical structures called glomeruli, which in all animals with differentiated olfactory systems are sites of densely spaced synaptic contacts between olfactory sensory axons and target central nervous system (CNS) neurons. Glomerulus development in the antennal (olfactory) lobe of the moth brain, which is initiated by the arrival of antennal receptor axons, requires interaction among three elements: glial cells, receptor axons, and their targets, the antennal‐lobe neurons. Receptor axons form an array of protoglomeruli that become surrounded by glia and serve as a template for mature glomeruli. Previous experiments showed that when the number of glial cells is sharply reduced during development either by irradiation or by an anti‐mitotic agent, receptor axons form protoglomeruli, but in the mature lobes, glomeruli are absent and central neurons lack the characteristic glomerular tufting of their arbors. The current investigation was conducted to determine which cellular events in the process of glomerulus formation are disrupted by severe reduction in glial‐cell number. The branching patterns of receptor axons and antennal‐lobe neurons were examined in animals that had been irradiated to produce glia‐deficient antennal lobes at stages during which glomeruli normally would develop. We found that the receptor axons did form protoglomeruli, but that the protoglomeruli quickly disintegrated in glia‐deficient antennal lobes; the receptor axons branched diffusely, except where several neighboring glia survived irradiation and together formed a wall of processes that appeared to block the passage of neuronal processes. Multi‐glomerular antennal‐lobe neurons never developed tufted arbors even at early stages. These results suggest that maintenance of protoglomeruli depends on the border of glia that forms around each protoglomerulus and that the subsequent tufting of antennal‐lobe neurons depends on maintenance of the protoglomerular template during the period of dendritic growth.
Cell and Tissue Research | 1999
Lynne A. Oland; Hector G. Marrero; Ingrid Burger
Abstract The antennal lobe of the moth contains several classes of glial cells that are likely to play functional roles in both the developing and mature lobe. In this study, confocal and electron microscopy were used to examine in detail the morphology of two classes of glial cells, those associated with olfactory receptor axons as they course to their targets in the lobe and those that form borders around the synaptic neuropil of the olfactory glomeruli. The former, the nerve-layer glia, have long processes with multiple expansions that enwrap axon fascicles; the latter, the neuropil glia, constitute two subgroups: complex glia with large cell bodies and branching, vellate arbors; and simple glia, with multiple, mostly unbranched processes with many lamellate expansions along their lengths. The processes of complex glia appear to be closely associated with axon fascicles as they enter the glomeruli, while those of the simple glia surround the glomeruli as part of a multi-lamellar glial envelope, their processes rarely invading the synaptic neuropil of the body of the glomerulus. The full morphological development of antennal-lobe glial cells requires more than two-thirds of metamorphic development. During this period, cells that began as cuboidal or spindle-shaped cells that were extensively dye-coupled to one another gradually assume their adult form and, at least under nonstimulated conditions, greatly reduce their coupling. These changes are only weakly dependent on the presence of olfactory receptor axons. Glial processes are somewhat shorter and less branched in the absence of these axons, but basic structure and degree of dye-coupling are unchanged.
The Journal of Comparative Neurology | 1998
Lynne A. Oland; Wendy M. Pott; Mark R. Higgins; Leslie P. Tolbert
Olfactory receptor axons in many species terminate centrally in an array of distinct glomeruli that are thought to encode the molecular features of odors. Particular molecular attributes are detected by receptor neurons widely distributed over the sensory epithelium, but these neurons then project to a small number of glomeruli in the olfactory bulb. This raises perplexing questions about olfactory axon guidance, especially how axons sort by odor specificity and how they find their appropriate targets in the brain. Taking advantage of the relative cellular simplicity of the moth antennal system, we have examined receptor axons in normally developing animals and also in preparations in which the nerve was experimentally misrouted. Just before they enter the antennal lobe, receptor axons undergo a dramatic reorganization in a discrete zone filled with glial cells. Here they shed neighbor relationships and become associated with axons that have common targets and presumably share common odor specificies. Electron microscopy revealed that the growth cones of early arriving axons travel preferentially next to glial processes. The growth cones of receptor axons were relatively simple except as they entered newly forming glomeruli. Misrouted nerves turned and ran along the surface of the brain until they reached the region of the antennal lobe. In only 6% of cases did misrouted axons enter the brain ectopically, never forming glomeruli. Our results suggest that olfactory receptor axons are attracted to the antennal lobe by soluble or surface‐bound cues and sort by odor specificity by using a mechanism that may involve glial cells. J. Comp. Neurol. 398:119–138, 1998.
International Journal of Developmental Neuroscience | 1996
Lynne A. Oland; Wendy M. Pott; Gene Bukhman; Xue J. Sun; Leslie P. Tolbert
During metamorphic development, the arrival at the olfactory (antennal) lobe of olfactory receptor axons initiates the process of glomerulus formation. The glomeruli are discrete spheroidal regions of neuropil that are the sites of synaptic interactions among receptor neurons and their target antennal‐lobe neurons. The process of glomerulus formation begins as groups of receptor axons form protoglomeruli. These dense clusters of terminal branches mostly are discrete entities from the time they can be recognized, although a few branches from neighboring protoglomeruli overlap laterally. A previous study by Schweitzeret al. [Schweitzer E. S., Sanes J. R. and Hildebrand J. G. (1976) Ontogeny of electroantennogram responses in the moth,Manduca sexta. J. Insect Physiol.22, 955–960] has shown that odor‐induced activity in the receptor neurons can be detected first in recordings from the axons in the antennal nerve only in the last few days of metamorphic development and thus could not influence the process of glomerulus formation. In this study, we have tested directly the possibility that an earlier presence of spontaneous activity in either the receptor axons or the antennal‐lobe neurons could affect the process. Tetrodotoxin, a Na+‐channel blocker, was injected into the hemolymph prior to the onset of glomerulus formation to block any spontaneous Na+‐dependent activity. Subsequent intracellular recordings from antennal‐lobe neurons revealed no spike activity. Comparison with vehicle‐injected control animals at stages during and after glomerulus formation revealed no differences in the localization of receptor‐axon terminal branches in the glomeruli, in the border of glial cells that forms around each glomerulus, or in the morphology of the tufted glomerular arbors of one of the antennal‐lobe neurons. We conclude that: (1) the process of glomerulus formation is largely independent of activity; and (2) glomeruli as modular units of the CNS more closely resemble cortical barrels than cortical columns, both in their ontogeny and in the lack of an obvious effect of activity on the morphology of the neurons arborizing within them.
Journal of Neurobiology | 1998
Lynne A. Oland; Leslie P. Tolbert
Mitral cells are the first neurons in the mammalian olfactory bulb to synapse with olfactory receptor axons during glomerulus development, and in an invertebrate, the moth Manduca sexta, mitral-like neurons overlap very early with olfactory receptor axons as they begin to form protoglomeruli. The possibility for early interaction between receptor neurons and mitral-like neurons led us to ask whether such an interaction plays an essential role in glomerulus development. In the current study in the moth, we surgically removed a major class of these mitral-like neurons before glomeruli began to form and asked: (a) Is the formation of the array of olfactory glomeruli triggered by an interaction of the first-arriving receptor axons with the dendrites of mitral-like neurons? (b) At the level of individual glomeruli, must the mitral-like dendrites be in place either to maintain receptor axons in a glomerular arrangement, or to guide later-growing dendrites of other types into the developing glomeruli? Our results indicate that even without the participation of this group of mitral-like neurons, the array of sexually isomorphic ordinary glomeruli forms and the basic substructure of individual glomeruli develops apparently normally. We conclude that the mitral-like neurons in Manduca are not essential for the formation of ordinary olfactory glomeruli during development.
Journal of Neuroscience Methods | 1996
Lynne A. Oland; Thomas Müller; Helmut Kettenmann; Jon H. Hayashi
Interactions among receptor neurons, glial cells and neurons intrinsic to the antennal lobe of the moth underlie the formation of olfactory glomeruli. To isolate these interactions, as well as to understand the effect of a variety of humoral agents on differentiation of the neurons and glia, we generate primary cultures of neurons or glia. These methods are described. In addition. we describe a protocol for producing slice preparations of the developing moth brain that we are using to study the biophysical and morphological development of glial cells. This technique allows us to examine a class of glial cells associated with the glomeruli that otherwise are nearly inaccessible using standard intracellular recording techniques. It also preserves the 3-dimensional arrangement of glia that may strongly influence the development of glomeruli.
Journal of Neurobiology | 1999
Karla S. Kent; Lynne A. Oland; John G. Hildebrand
Iterated neuropil modules called glomeruli are characteristic of primary olfactory centers in both vertebrates and invertebrates. To gain insight into the developmental mechanisms underlying the formation of such structured, organized neuropil, we have examined the development of an identified glomerulus in the olfactory (antennal) lobe of the moth Manduca sexta. The labial pit organ glomerulus (LPOG) receives bilateral sensory projections from the labial pit organs in the labial palps of the mouthparts, while other glomeruli in the antennal lobe receive unilateral projections from the antenna. Here, we chronicle the development of the LPOG under normal and perturbed conditions. Our findings suggest that the sensory axons of the labial pit organ, like those of the antenna, induce and shape growth of interneuronal arborizations, but specific features of interneuronal arborizations such as the relative position of glomerular arborizations within the antennal lobe are independent of both classes of afferent innervation. Labial pit organ axons and antennal axons exhibit a high degree of specificity for their respective target regions, independent of the presence or absence of the other class of afferent axon or the route taken to the antennal lobe. Specification of glomerular position is intrinsic to the antennal lobe rather than a consequence of competition between afferent axons.
In Vitro Cellular & Developmental Biology – Animal | 1994
Lynne A. Oland; Herbert Oberlander
SummaryDuring metamorphic adult development, neurons and glial cells in the developing olfactory (antennal) lobes of the moth undergo characteristic and extensive changes in shape. These changes depend on an interplay among these two cell types and ingrowing sensory axons. All of the direct cellular interactions occur against a background of changing steroid hormone titers. Antennal-lobe (AL) neurons dissociated from stage-5 (of 18 stages) metamorphosing animals survive at least 3 wk in primary cell culture. We describe here the morphological influences on AL neurons of (1) exposure to the steroid hormone 20-hydroxyecdysone, (2) exposure to sensory axons, and (3) interactions among the AL neurons. Cultured AL neurons respond only weakly, if at all, to 20-hydroxyecdysone. They do, however, show greater total outgrowth and branching when they had been exposed in vivo to sensory axons. Because there is no direct contact between some of the neuronal types and the sensory axons at the time of dissociation, the increase in outgrowth must have been mediated via a diffusible factor(s). When AL cells (neurons and glia) are plated at high density in low volumes of medium, or when the cells are plated at low density but in the presence of medium conditioned by high-density cultures, neurite outgrowth and cell survival are increased. Nerve growth factor (NGF), epidermal growth factor (EGF), fibroblast growth factor-basic (bFGF), transforming growth factor-β (TGFβ) and insulin-like growth factor (ILGF) had no obvious effect on neuronal morphology and thus are unlikely to underlie these effects. Our results suggest that the mature shape of AL neurons depends on developmental interactions among a number of diffusible factors.