Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lynne A. Wolfe is active.

Publication


Featured researches published by Lynne A. Wolfe.


Nature Genetics | 2014

Gain-of-function mutations in IFIH1 cause a spectrum of human disease phenotypes associated with upregulated type I interferon signaling

Gillian I. Rice; Yoandris del Toro Duany; Emma M. Jenkinson; Gabriella M.A. Forte; Beverley Anderson; Giada Ariaudo; Brigitte Bader-Meunier; Roberta Battini; Michael W. Beresford; Manuela Casarano; Mondher Chouchane; Rolando Cimaz; Abigail Collins; Nuno J V Cordeiro; Russell C. Dale; Joyce Davidson; Liesbeth De Waele; Isabelle Desguerre; Laurence Faivre; Elisa Fazzi; Bertrand Isidor; Lieven Lagae; Andrew Latchman; Pierre Lebon; Chumei Li; John H. Livingston; Charles Marques Lourenço; Maria Margherita Mancardi; Alice Masurel-Paulet; Iain B. McInnes

The type I interferon system is integral to human antiviral immunity. However, inappropriate stimulation or defective negative regulation of this system can lead to inflammatory disease. We sought to determine the molecular basis of genetically uncharacterized cases of the type I interferonopathy Aicardi-Goutières syndrome and of other undefined neurological and immunological phenotypes also demonstrating an upregulated type I interferon response. We found that heterozygous mutations in the cytosolic double-stranded RNA receptor gene IFIH1 (also called MDA5) cause a spectrum of neuroimmunological features consistently associated with an enhanced interferon state. Cellular and biochemical assays indicate that these mutations confer gain of function such that mutant IFIH1 binds RNA more avidly, leading to increased baseline and ligand-induced interferon signaling. Our results demonstrate that aberrant sensing of nucleic acids can cause immune upregulation.


Genetics in Medicine | 2011

The National Institutes of Health Undiagnosed Diseases Program: insights into rare diseases

William A. Gahl; Thomas C. Markello; Camilo Toro; Karin Fuentes Fajardo; Murat Sincan; Fred Gill; Hannah Carlson-Donohoe; Andrea Gropman; Tyler Mark Pierson; Gretchen Golas; Lynne A. Wolfe; Catherine Groden; Rena Godfrey; Michele E. Nehrebecky; Colleen Wahl; Dennis M. D. Landis; Sandra Yang; Anne Madeo; James C. Mullikin; Cornelius F. Boerkoel; Cynthia J. Tifft; David Adams

Purpose:This report describes the National Institutes of Health Undiagnosed Diseases Program, details the Program’s application of genomic technology to establish diagnoses, and details the Program’s success rate during its first 2 years.Methods:Each accepted study participant was extensively phenotyped. A subset of participants and selected family members (29 patients and 78 unaffected family members) was subjected to an integrated set of genomic analyses including high-density single-nucleotide polymorphism arrays and whole exome or genome analysis.Results:Of 1,191 medical records reviewed, 326 patients were accepted and 160 were admitted directly to the National Institutes of Health Clinical Center on the Undiagnosed Diseases Program service. Of those, 47% were children, 55% were females, and 53% had neurologic disorders. Diagnoses were reached on 39 participants (24%) on clinical, biochemical, pathologic, or molecular grounds; 21 diagnoses involved rare or ultra-rare diseases. Three disorders were diagnosed based on single-nucleotide polymorphism array analysis and three others using whole exome sequencing and filtering of variants. Two new disorders were discovered. Analysis of the single-nucleotide polymorphism array study cohort revealed that large stretches of homozygosity were more common in affected participants relative to controls.Conclusion:The National Institutes of Health Undiagnosed Diseases Program addresses an unmet need, i.e., the diagnosis of patients with complex, multisystem disorders. It may serve as a model for the clinical application of emerging genomic technologies and is providing insights into the characteristics of diseases that remain undiagnosed after extensive clinical workup.Genet Med 2012:14(1):51–59


Genetics in Medicine | 2015

Diagnosis and management of mitochondrial disease: a consensus statement from the Mitochondrial Medicine Society.

Sumit Parikh; Amy Goldstein; Mary Kay Koenig; Fernando Scaglia; Gregory M. Enns; Russell P. Saneto; Irina Anselm; Bruce H. Cohen; Marni J. Falk; Carol L. Greene; Andrea Gropman; Richard H. Haas; Michio Hirano; Phil G. Morgan; Katherine B. Sims; Mark A. Tarnopolsky; Johan L. K. Van Hove; Lynne A. Wolfe; Salvatore DiMauro

Purpose:The purpose of this statement is to review the literature regarding mitochondrial disease and to provide recommendations for optimal diagnosis and treatment. This statement is intended for physicians who are engaged in diagnosing and treating these patients. Methods:The Writing Group members were appointed by the Mitochondrial Medicine Society. The panel included members with expertise in several different areas. The panel members utilized a comprehensive review of the literature, surveys, and the Delphi method to reach consensus. We anticipate that this statement will need to be updated as the field continues to evolve. Results:Consensus-based recommendations are provided for the diagnosis and treatment of mitochondrial disease.Conclusion:The Delphi process enabled the formation of consensus-based recommendations. We hope that these recommendations will help standardize the evaluation, diagnosis, and care of patients with suspected or demonstrated mitochondrial disease.Genet Med 17 9, 689–701.


Journal of Clinical Investigation | 2011

Mutations in the human SC4MOL gene encoding a methyl sterol oxidase cause psoriasiform dermatitis, microcephaly, and developmental delay

Miao He; Lisa E. Kratz; Joshua J. Michel; Abbe N. Vallejo; Laura K. Ferris; Richard I. Kelley; Jacqueline J. Hoover; Drazen M. Jukic; K. Michael Gibson; Lynne A. Wolfe; Michael E. Zwick; Jerry Vockley

Defects in cholesterol synthesis result in a wide variety of symptoms, from neonatal lethality to the relatively mild dysmorphic features and developmental delay found in individuals with Smith-Lemli-Opitz syndrome. We report here the identification of mutations in sterol-C4-methyl oxidase–like gene (SC4MOL) as the cause of an autosomal recessive syndrome in a human patient with psoriasiform dermatitis, arthralgias, congenital cataracts, microcephaly, and developmental delay. This gene encodes a sterol-C4-methyl oxidase (SMO), which catalyzes demethylation of C4-methylsterols in the cholesterol synthesis pathway. C4-Methylsterols are meiosis-activating sterols (MASs). They exist at high concentrations in the testis and ovary and play roles in meiosis activation. In this study, we found that an accumulation of MASs in the patient led to cell overproliferation in both skin and blood. SMO deficiency also substantially altered immunocyte phenotype and in vitro function. MASs serve as ligands for liver X receptors α and β(LXRα and LXRβ), which are important in regulating not only lipid transport in the epidermis, but also innate and adaptive immunity. Deficiency of SMO represents a biochemical defect in the cholesterol synthesis pathway, the clinical spectrum of which remains to be defined.


The New England Journal of Medicine | 2014

Glycosylation, Hypogammaglobulinemia, and Resistance to Viral Infections

Mohammed A. Sadat; Susan Moir; Tae-Wook Chun; Paolo Lusso; Gerardo G. Kaplan; Lynne A. Wolfe; Matthew J. Memoli; Miao He; Hugo Vega; Yan Huang; Nadia Hussein; Elma Nievas; Raquel Mitchell; Mary Garofalo; Aaron Louie; Derek D. C. Ireland; Claire Grunes; Raffaello Cimbro; Vyomesh Patel; Genevieve Holzapfel; Daniel Salahuddin; Tyler Bristol; David J. Adams; Beatriz E. Marciano; Madhuri Hegde; Yuxing Li; Katherine R. Calvo; Jennifer Stoddard; J. Shawn Justement; Jerome Jacques

Genetic defects in MOGS, the gene encoding mannosyl-oligosaccharide glucosidase (the first enzyme in the processing pathway of N-linked oligosaccharide), cause the rare congenital disorder of glycosylation type IIb (CDG-IIb), also known as MOGS-CDG. MOGS is expressed in the endoplasmic reticulum and is involved in the trimming of N-glycans. We evaluated two siblings with CDG-IIb who presented with multiple neurologic complications and a paradoxical immunologic phenotype characterized by severe hypogammaglobulinemia but limited clinical evidence of an infectious diathesis. A shortened immunoglobulin half-life was determined to be the mechanism underlying the hypogammaglobulinemia. Impaired viral replication and cellular entry may explain a decreased susceptibility to infections.


Genetics in Medicine | 2014

The implications of familial incidental findings from exome sequencing: the NIH Undiagnosed Diseases Program experience.

Lauren Lawrence; Murat Sincan; Thomas C. Markello; David Adams; Fred Gill; Rena Godfrey; Gretchen Golas; Catherine Groden; Dennis M. D. Landis; Michele E. Nehrebecky; Grace Park; Ariane Soldatos; Cynthia J. Tifft; Camilo Toro; Colleen Wahl; Lynne A. Wolfe; William A. Gahl; Cornelius F. Boerkoel

Purpose:Using exome sequence data from 159 families participating in the National Institutes of Health Undiagnosed Diseases Program, we evaluated the number and inheritance mode of reportable incidental sequence variants.Methods:Following the American College of Medical Genetics and Genomics recommendations for reporting of incidental findings from next-generation sequencing, we extracted variants in 56 genes from the exome sequence data of 543 subjects and determined the reportable incidental findings for each participant. We also defined variant status as inherited or de novo for those with available parental sequence data.Results:We identified 14 independent reportable variants in 159 (8.8%) families. For nine families with parental sequence data in our cohort, a parent transmitted the variant to one or more children (nine minor children and four adult children). The remaining five variants occurred in adults for whom parental sequences were unavailable.Conclusion:Our results are consistent with the expectation that a small percentage of exomes will result in identification of an incidental finding under the American College of Medical Genetics and Genomics recommendations. Additionally, our analysis of family sequence data highlights that genome and exome sequencing of families has unavoidable implications for immediate family members and therefore requires appropriate counseling for the family.Genet Med 16 10, 741–750.


Genetics in Medicine | 2016

Computational evaluation of exome sequence data using human and model organism phenotypes improves diagnostic efficiency.

William P. Bone; Nicole L. Washington; Orion J. Buske; David Adams; Joie Davis; David D. Draper; Elise Flynn; Marta Girdea; Rena Godfrey; Gretchen Golas; Catherine Groden; Julius Jacobsen; Sebastian Köhler; Elizabeth M.J. Lee; Amanda E. Links; Thomas C. Markello; Christopher J. Mungall; Michele E. Nehrebecky; Peter N. Robinson; Murat Sincan; Ariane Soldatos; Cynthia J. Tifft; Camilo Toro; Heather Trang; Elise Valkanas; Nicole Vasilevsky; Colleen Wahl; Lynne A. Wolfe; Cornelius F. Boerkoel; Michael Brudno

Purpose:Medical diagnosis and molecular or biochemical confirmation typically rely on the knowledge of the clinician. Although this is very difficult in extremely rare diseases, we hypothesized that the recording of patient phenotypes in Human Phenotype Ontology (HPO) terms and computationally ranking putative disease-associated sequence variants improves diagnosis, particularly for patients with atypical clinical profiles.Methods:Using simulated exomes and the National Institutes of Health Undiagnosed Diseases Program (UDP) patient cohort and associated exome sequence, we tested our hypothesis using Exomiser. Exomiser ranks candidate variants based on patient phenotype similarity to (i) known disease–gene phenotypes, (ii) model organism phenotypes of candidate orthologs, and (iii) phenotypes of protein–protein association neighbors.Results:Benchmarking showed Exomiser ranked the causal variant as the top hit in 97% of known disease–gene associations and ranked the correct seeded variant in up to 87% when detectable disease–gene associations were unavailable. Using UDP data, Exomiser ranked the causative variant(s) within the top 10 variants for 11 previously diagnosed variants and achieved a diagnosis for 4 of 23 cases undiagnosed by clinical evaluation.Conclusion:Structured phenotyping of patients and computational analysis are effective adjuncts for diagnosing patients with genetic disorders.Genet Med 18 6, 608–617.


American Journal of Human Genetics | 2015

Recurrent Mutations in the Basic Domain of TWIST2 Cause Ablepharon Macrostomia and Barber-Say Syndromes

Shannon Marchegiani; Taylor Davis; Federico Tessadori; Gijs van Haaften; Francesco Brancati; Alexander Hoischen; Haigen Huang; Elise Valkanas; Barbara N. Pusey; Denny Schanze; Hanka Venselaar; Anneke T. Vulto-van Silfhout; Lynne A. Wolfe; Cynthia J. Tifft; Patricia M. Zerfas; Giovanna Zambruno; Ariana Kariminejad; Farahnaz Sabbagh-Kermani; Janice Lee; Maria Tsokos; Chyi Chia R. Lee; Victor Evangelista de Faria Ferraz; Eduarda Morgana Da Silva; Cathy A. Stevens; Nathalie Roche; Oliver Bartsch; Peter Farndon; Eva Bermejo-Sánchez; Brian P. Brooks; Valerie Maduro

Ablepharon macrostomia syndrome (AMS) and Barber-Say syndrome (BSS) are rare congenital ectodermal dysplasias characterized by similar clinical features. To establish the genetic basis of AMS and BSS, we performed extensive clinical phenotyping, whole exome and candidate gene sequencing, and functional validations. We identified a recurrent de novo mutation in TWIST2 in seven independent AMS-affected families, as well as another recurrent de novo mutation affecting the same amino acid in ten independent BSS-affected families. Moreover, a genotype-phenotype correlation was observed, because the two syndromes differed based solely upon the nature of the substituting amino acid: a lysine at TWIST2 residue 75 resulted in AMS, whereas a glutamine or alanine yielded BSS. TWIST2 encodes a basic helix-loop-helix transcription factor that regulates the development of mesenchymal tissues. All identified mutations fell in the basic domain of TWIST2 and altered the DNA-binding pattern of Flag-TWIST2 in HeLa cells. Comparison of wild-type and mutant TWIST2 expressed in zebrafish identified abnormal developmental phenotypes and widespread transcriptome changes. Our results suggest that autosomal-dominant TWIST2 mutations cause AMS or BSS by inducing protean effects on the transcription factors DNA binding.


Molecular Genetics and Metabolism | 2014

Three rare diseases in one Sib pair: RAI1, PCK1, GRIN2B mutations associated with Smith-Magenis Syndrome, cytosolic PEPCK deficiency and NMDA receptor glutamate insensitivity.

David Adams; Hongjie Yuan; Todd Holyoak; Katrina H. Arajs; Parvin Hakimi; Thomas C. Markello; Lynne A. Wolfe; Thierry Vilboux; Barbara K. Burton; Karin Fuentes Fajardo; George Grahame; Conisha Holloman; Murat Sincan; Ann C.M. Smith; Gordon Wells; Yan Huang; Hugo Vega; James P. Snyder; Gretchen Golas; Cynthia J. Tifft; Cornelius F. Boerkoel; Richard W. Hanson; Stephen F. Traynelis; Douglas S. Kerr; William A. Gahl

The National Institutes of Health Undiagnosed Diseases Program evaluates patients for whom no diagnosis has been discovered despite a comprehensive diagnostic workup. Failure to diagnose a condition may arise from the mutation of genes previously unassociated with disease. However, we hypothesized that this could also co-occur with multiple genetic disorders. Demonstrating a complex syndrome caused by multiple disorders, we report two siblings manifesting both similar and disparate signs and symptoms. They shared a history of episodes of hypoglycemia and lactic acidosis, but had differing exam findings and developmental courses. Clinical acumen and exome sequencing combined with biochemical and functional studies identified three genetic conditions. One sibling had Smith-Magenis Syndrome and a nonsense mutation in the RAI1 gene. The second sibling had a de novo mutation in GRIN2B, which resulted in markedly reduced glutamate potency of the encoded receptor. Both siblings had a protein-destabilizing homozygous mutation in PCK1, which encodes the cytosolic isoform of phosphoenolpyruvate carboxykinase (PEPCK-C). In summary, we present the first clinically-characterized mutation of PCK1 and demonstrate that complex medical disorders can represent the co-occurrence of multiple diseases.


Mitochondrion | 2014

Practice patterns of mitochondrial disease physicians in North America. Part 1: diagnostic and clinical challenges.

Sumit Parikh; Amy Goldstein; Mary Kay Koenig; Fernando Scaglia; Gregory M. Enns; Russell P. Saneto; Irina Anselm; Abigail Collins; Bruce H. Cohen; Suzanne D. DeBrosse; David Dimmock; Marni J. Falk; Jaya Ganesh; Carol L. Greene; Andrea Gropman; Richard H. Haas; Stephen G. Kahler; John Kamholz; Fran Kendall; Mark S. Korson; Andre Mattman; Margherita Milone; Dmitriy Niyazov; Phillip L. Pearl; Tyler Reimschisel; Ramona Salvarinova-Zivkovic; Katherine B. Sims; Mark A. Tarnopolsky; Chang Yong Tsao; Johan L. K. Van Hove

Mitochondrial medicine is a young subspecialty. Clinicians have a limited evidence base on which to formulate clinical decisions regarding diagnosis, treatment and patient management. Mitochondrial medicine specialists have cobbled together an informal set of rules and paradigms for preventive care and management based in part on anecdotal experience. The Mitochondrial Medicine Society (MMS) assessed the current state of clinical practice from diagnosis, to preventive care and treatment, as provided by various mitochondrial disease specialists in North America. We hope that by obtaining this information we can begin moving towards formulating a set of consensus criteria and establishing standards of care.

Collaboration


Dive into the Lynne A. Wolfe's collaboration.

Top Co-Authors

Avatar

William A. Gahl

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Cynthia J. Tifft

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

David Adams

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Thomas C. Markello

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Miao He

Children's Hospital of Philadelphia

View shared research outputs
Top Co-Authors

Avatar

Amy Goldstein

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Camilo Toro

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Jerry Vockley

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Mariska Davids

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Marni J. Falk

University of Pennsylvania

View shared research outputs
Researchain Logo
Decentralizing Knowledge