Lynne Hugendubler
National Institutes of Health
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Lynne Hugendubler.
The Journal of Clinical Endocrinology and Metabolism | 2010
Monica C. Skarulis; Francesco S. Celi; Elisabetta Mueller; Marina S. Zemskova; Rana Malek; Lynne Hugendubler; Craig Cochran; Jeffrey Solomon; Clara C. Chen; Phillip Gorden
CONTEXT Brown adipose tissue (BAT) found by positron emission/computed tomography (PET-CT) using flouro-deoxyglucose (FDG) is inducible by cold exposure in men. Factors leading to increased BAT are of great interest for its potential role in the treatment of diabetes and obesity. OBJECTIVE We tested whether thyroid hormone (TH) levels are related to the volume and activity of BAT in a patient with a mutation in the insulin receptor gene. DESIGN/SETTING/INTERVENTION: Our work was based on the case report of a patient in an observational study at the National Institutes of Health. PATIENT The patient discontinued insulin and oral antidiabetics after thyroidectomy and suppressive-dose levothyroxine therapy for thyroid cancer. PET-CT uptake in BAT was confirmed by histology and molecular analysis. OUTCOMES PET-CT studies were performed, and we measured hemoglobin A1c and resting energy expenditure before and after levothyroxine discontinuation for thyroid cancer testing. Molecular studies of BAT and white adipose samples are presented. RESULT Supraclavicular and periumbilical sc adipose tissue demonstrated molecular features of BAT including uncoupling protein-1, type 2 deiodinase, and PR domain containing 16 by quantitative PCR. Activity of type 2 deiodinase activity was increased. The discontinuation of levothyroxine resulted in decreased FDG uptake and diminished volume of BAT depots accompanied by worsening of diabetic control. CONCLUSIONS This case demonstrates the TH effect on BAT activity and volume in this patient and an association between BAT activity and glucose levels in this patient. Because the contribution of TH on skeletal muscle energy expenditure and fuel metabolism was not assessed, an association between BAT activity and glucose homeostasis can only be suggested.
European Journal of Human Genetics | 2004
Anne Fogli; Raphael Schiffmann; Lynne Hugendubler; Patricia Combes; Enrico Bertini; Diana Rodriguez; Scot R. Kimball; Odile Boespflug-Tanguy
Mutations in each of the five eucaryotic initiation factor 2B (eIF2B) subunits have been found in leukodystrophies of various severity: Cree leukoencephalopathy, childhood ataxia with central hypomyelination/leukodystrophy with vanishing white matter and ovarioleukodystrophy. A continuum was observed from fatal infantile forms to adult forms without neurological deterioration. Disease severity was found to correlate with the age at disease onset and the specific amino-acid substitution. In order to analyze the functional consequences of eIF2B mutations, we measured the guanine nucleotide exchange factor (GEF) activity of eIF2B in transformed lymphocytes from 30 affected patients carrying mutations in eIF2B compared to 10 unaffected heterozygotes and 22 controls without eIF2B mutations. A significant decrease of 20–70% in GEF activity was observed in all mutated cells. The severity of this decrement of GEF activity correlated with age at onset of the disease. These results suggest that a deficiency in GEF activity underlies the encephalopathy associated eIF2B-related disease. Our study demonstrates that the evaluation of the GEF activity in transformed lymphocytes represents an interesting alternative test to the systematic screening of the five EIF2B genes. This relevant cellular model may also be used to test the functional impact of different molecules on the GEF activity for future therapeutic strategies.
Nature Communications | 2011
Ruifeng Teng; Oksana Gavrilova; Norio Suzuki; Tatyana Chanturiya; Daniel Schimel; Lynne Hugendubler; Selin Mammen; Dena R. Yver; Samuel W. Cushman; Elisabetta Mueller; Masayuki Yamamoto; Lewis L. Hsu; Constance Tom Noguchi
While erythropoietin is the cytokine known that regulates erythropoiesis, erythropoietin receptor (EpoR) expression and associated activity beyond hematopoietic tissue remain uncertain. Here we show that mice with EpoR expression restricted to hematopoietic tissues (Tg) develop obesity and insulin resistance. Tg-mice exhibit a decrease in energy expenditure and an increase in white fat mass and adipocyte number. Conversely, erythropoietin treatment of wild-type mice increases energy expenditure and reduces food intake and fat mass accumulation but showed no effect in body weight of Tg-mice. EpoR is expressed at a high level in white adipose tissue and in the proopiomelanocortin neurons of the hypothalamus. While Epo treatment in wild-type mice induces the expression of the polypeptide hormone precursor gene, proopiomelanocortin, mice lacking EpoR show reduced levels of proopiomelanocortin in the hypothalamus. This study provides the first evidence that mice lacking EpoR in nonhematopoietic tissue become obese and insulin resistant with loss of erythropoietin regulation of energy homeostasis.
Proceedings of the National Academy of Sciences of the United States of America | 2010
Alessia Bagattin; Lynne Hugendubler; Elisabetta Mueller
Mitochondria and peroxisomes execute some analogous, nonredundant functions including fatty acid oxidation and detoxification of reactive oxygen species, and, in response to select metabolic cues, undergo rapid remodeling and division. Although these organelles share some components of their division machinery, it is not known whether a common regulator coordinates their remodeling and biogenesis. Here we show that in response to thermogenic stimuli, peroxisomes in brown fat tissue (BAT) undergo selective remodeling and expand in number and demonstrate that ectopic expression of the transcriptional coactivator PGC-1α recapitulates these effects on the peroxisomal compartment, both in vitro and in vivo. Conversely, β-adrenergic stimulation of PGC-1α−/− cells results in blunted induction of peroxisomal gene expression. Surprisingly, PPARα was not required for the induction of critical biogenesis factors, suggesting that PGC-1α orchestrates peroxisomal remodeling through a PPARα-independent mechanism. Our data suggest that PGC-1α is critical to peroxisomal physiology, establishing a role for this factor as a fundamental orchestrator of cellular adaptation to energy demands.
Immunology | 2008
David S. Leslie; Christopher C. Dascher; Katherine Cembrola; Maria Townes; David L. Hava; Lynne Hugendubler; Elisabetta Mueller; Lisa Fox; Carme Roura-Mir; D. Branch Moody; Michael S. Vincent; Jenny E. Gumperz; Petr A. Illarionov; Gurdyal S. Besra; Carol Reynolds; Michael B. Brenner
Dendritic cells (DCs) are highly potent antigen‐presenting cells (APCs) and play a vital role in stimulating naïve T cells. Treatment of human blood monocytes with the cytokines granulocyte–macrophage colony‐stimulating factor (GM‐CSF) and interleukin (IL)‐4 stimulates them to develop into immature dendritic cells (iDCs) in vitro. DCs generated by this pathway have a high capacity to prime and activate resting T cells and prominently express CD1 antigen‐presenting molecules on the cell surface. The presence of human serum during the differentiation of iDCs from monocytes inhibits the expression of CD1a, CD1b and CD1c, but not CD1d. Correspondingly, T cells that are restricted by CD1c showed poor responses to DCs that were generated in the presence of human serum, while the responses of CD1d‐restricted T cells were enhanced. We chemically fractionated human serum to isolate the bioactive factors that modulate surface expression of CD1 proteins during monocyte to DC differentiation. The human serum components that affected CD1 expression partitioned with polar organic soluble fractions. Lysophosphatidic acid and cardiolipin were identified as lipids present in normal human serum that potently modulate CD1 expression. Control of CD1 expression was mediated at the level of gene transcription and correlated with activation of the peroxisome proliferator‐activated receptor (PPAR) nuclear hormone receptors. These findings indicate that the ability of human DCs to present lipid antigens to T cells through expression of CD1 molecules is sensitively regulated by lysophosphatidic acid and cardiolipin in serum, which are ligands that can activate PPAR transcription factors.
Molecular Endocrinology | 2010
Natalia Di Pietro; Valentine Panel; Schantel Hayes; Alessia Bagattin; Sunitha Meruvu; Assunta Pandolfi; Lynne Hugendubler; Géza Fejes-Tóth; Anikó Náray-Fejes-Tóth; Elisabetta Mueller
The serum and glucocorticoid-inducible kinase 1 (SGK1) is an inducible kinase the physiological function of which has been characterized primarily in the kidney. Here we show that SGK1 is expressed in white adipose tissue and that its levels are induced in the conversion of preadipocytes into fat cells. Adipocyte differentiation is significantly diminished via small interfering RNA inhibition of endogenous SGK1 expression, whereas ectopic expression of SGK1 in mesenchymal precursor cells promotes adipogenesis. The SGK1-mediated phenotypic effects on differentiation parallel changes in the mRNA levels for critical regulators and markers of adipogenesis, such as peroxisome proliferator-activated receptor gamma, CCAAT enhancer binding protein alpha, and fatty acid binding protein aP2. We demonstrate that SGK1 affects differentiation by direct phosphorylation of Foxo1, thereby changing its cellular localization from the nucleus to the cytosol. In addition we show that SGK1-/- cells are unable to relocalize Foxo1 to the cytosol in response to dexamethasone. Together these results show that SGK1 influences adipocyte differentiation by regulating Foxo1 phosphorylation and reveal a potentially important function for this kinase in the control of fat mass and function.
Journal of Cell Biology | 2009
Chau H. Nguyen; Hong Ming; Peishen Zhao; Lynne Hugendubler; Robert Gros; Scot R. Kimball; Peter Chidiac
A regulator of G protein signaling, RGS2, moonlights in protein synthesis control.
Journal of Biological Chemistry | 2011
Sunitha Meruvu; Lynne Hugendubler; Elisabetta Mueller
Zinc finger proteins constitute the largest family of transcription regulators in eukaryotes. These factors are involved in diverse processes in many tissues, including development and differentiation. We report here the characterization of the zinc finger protein ZNF638 as a novel regulator of adipogenesis. ZNF638 is induced early during adipocyte differentiation. Ectopic expression of ZNF638 increases adipogenesis in vitro, whereas its knockdown inhibits differentiation and decreases the expression of adipocyte-specific genes. ZNF638 physically interacts and transcriptionally cooperates with CCAAT/enhancer-binding protein (C/EBP) β and C/EBPδ. This interaction leads to the expression of peroxisome proliferator-activated receptor γ, which is the key regulator of adipocyte differentiation. In summary, ZNF638 is a novel and early regulator of adipogenesis that works as a transcription cofactor of C/EBPs.
Journal of Lipid Research | 2014
Chen Du; Xinran Ma; Sunitha Meruvu; Lynne Hugendubler; Elisabetta Mueller
Increasing evidence indicates that transcription and alternative splicing are coordinated processes; however, our knowledge of specific factors implicated in both functions during the process of adipocyte differentiation is limited. We have previously demonstrated that the zinc finger protein ZNF638 plays a role as a transcriptional coregulator of adipocyte differentiation via induction of PPARγ in cooperation with CCAAT/enhancer binding proteins (C/EBPs). Here we provide new evidence that ZNF638 is localized in nuclear bodies enriched with splicing factors, and through biochemical purification of ZNF638’s interacting proteins in adipocytes and mass spectrometry analysis, we show that ZNF638 interacts with splicing regulators. Functional analysis of the effects of ectopic ZNF638 expression on a minigene reporter demonstrated that ZNF638 is sufficient to promote alternative splicing, a function enhanced through its recruitment to the minigene promoter at C/EBP responsive elements via C/EBP proteins. Structure-function analysis revealed that the arginine/serine-rich motif and the C-terminal zinc finger domain required for speckle localization are necessary for the adipocyte differentiation function of ZNF638 and for the regulation of the levels of alternatively spliced isoforms of lipin1 and nuclear receptor co-repressor 1. Overall, our data demonstrate that ZNF638 participates in splicing decisions and that it may control adipogenesis through regulation of the relative amounts of differentiation-specific isoforms.
Molecular and Cellular Biology | 2013
Lingyan Xu; Valentine Panel; Xinran Ma; Chen Du; Lynne Hugendubler; Oksana Gavrilova; Alice Liu; Tracey McLaughlin; Klaus H. Kaestner; Elisabetta Mueller
ABSTRACT Conversion of mesenchymal stem cells into terminally differentiated adipocytes progresses sequentially through regulated transcriptional steps. While it is clear that the late phases of adipocyte maturation are governed by the nuclear receptor peroxisome proliferator-activated receptor gamma (PPARγ), less is known about the transcriptional control of the initial stages of differentiation. To identify early regulators, we performed a small interfering RNA (siRNA) screen of Forkhead-box genes in adipocytes and show here for the first time that the winged helix factor Foxa3 promotes adipocyte differentiation by cooperating with C/EBPβ and -δ to transcriptionally induce PPARγ expression. Furthermore, we demonstrate that mice with genetic ablation of Foxa3 have a selective decrease in epididymal fat depot and a cell-autonomous defect to induce PPARγ specifically in their visceral adipocytes. In obese subjects, FOXA3 is differentially expressed in visceral and subcutaneous adipose depots. Overall, our study implicates Foxa3 in the regulation of adipocyte differentiation and depot-selective adipose tissue expansion.