Lynne V. Nazareth
Baylor College of Medicine
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Lynne V. Nazareth.
Nature | 2008
David A. Wheeler; Maithreyan Srinivasan; Michael Egholm; Yufeng Shen; Lei Chen; Amy L. McGuire; Wen He; Yi-Ju Chen; Vinod Makhijani; G. Thomas Roth; Xavier V. Gomes; Karrie R. Tartaro; Faheem Niazi; Cynthia Turcotte; Gerard P. Irzyk; James R. Lupski; Craig Chinault; Xingzhi Song; Yue Liu; Ye Yuan; Lynne V. Nazareth; Xiang Qin; Donna M. Muzny; Marcel Margulies; George M. Weinstock; Richard A. Gibbs; Jonathan M. Rothberg
The association of genetic variation with disease and drug response, and improvements in nucleic acid technologies, have given great optimism for the impact of ‘genomic medicine’. However, the formidable size of the diploid human genome, approximately 6 gigabases, has prevented the routine application of sequencing methods to deciphering complete individual human genomes. To realize the full potential of genomics for human health, this limitation must be overcome. Here we report the DNA sequence of a diploid genome of a single individual, James D. Watson, sequenced to 7.4-fold redundancy in two months using massively parallel sequencing in picolitre-size reaction vessels. This sequence was completed in two months at approximately one-hundredth of the cost of traditional capillary electrophoresis methods. Comparison of the sequence to the reference genome led to the identification of 3.3 million single nucleotide polymorphisms, of which 10,654 cause amino-acid substitution within the coding sequence. In addition, we accurately identified small-scale (2–40,000 base pair (bp)) insertion and deletion polymorphism as well as copy number variation resulting in the large-scale gain and loss of chromosomal segments ranging from 26,000 to 1.5 million base pairs. Overall, these results agree well with recent results of sequencing of a single individual by traditional methods. However, in addition to being faster and significantly less expensive, this sequencing technology avoids the arbitrary loss of genomic sequences inherent in random shotgun sequencing by bacterial cloning because it amplifies DNA in a cell-free system. As a result, we further demonstrate the acquisition of novel human sequence, including novel genes not previously identified by traditional genomic sequencing. This is the first genome sequenced by next-generation technologies. Therefore it is a pilot for the future challenges of ‘personalized genome sequencing’.
Nature | 2012
Trudy F. C. Mackay; Stephen Richards; Eric A. Stone; Antonio Barbadilla; Julien F. Ayroles; Dianhui Zhu; Sònia Casillas; Yi Han; Michael M. Magwire; Julie M. Cridland; Mark F. Richardson; Robert R. H. Anholt; Maite Barrón; Crystal Bess; Kerstin P. Blankenburg; Mary Anna Carbone; David Castellano; Lesley S. Chaboub; Laura H. Duncan; Zeke Harris; Mehwish Javaid; Joy Jayaseelan; Shalini N. Jhangiani; Katherine W. Jordan; Fremiet Lara; Faye Lawrence; Sandra L. Lee; Pablo Librado; Raquel S. Linheiro; Richard F. Lyman
A major challenge of biology is understanding the relationship between molecular genetic variation and variation in quantitative traits, including fitness. This relationship determines our ability to predict phenotypes from genotypes and to understand how evolutionary forces shape variation within and between species. Previous efforts to dissect the genotype–phenotype map were based on incomplete genotypic information. Here, we describe the Drosophila melanogaster Genetic Reference Panel (DGRP), a community resource for analysis of population genomics and quantitative traits. The DGRP consists of fully sequenced inbred lines derived from a natural population. Population genomic analyses reveal reduced polymorphism in centromeric autosomal regions and the X chromosome, evidence for positive and negative selection, and rapid evolution of the X chromosome. Many variants in novel genes, most at low frequency, are associated with quantitative traits and explain a large fraction of the phenotypic variance. The DGRP facilitates genotype–phenotype mapping using the power of Drosophila genetics.
The New England Journal of Medicine | 2010
James R. Lupski; Jeffrey G. Reid; Claudia Gonzaga-Jauregui; David Rio Deiros; Lynne V. Nazareth; Matthew N. Bainbridge; Huyen Dinh; Chyn Jing; David A. Wheeler; Amy L. McGuire; Feng Zhang; Pawel Stankiewicz; John J. Halperin; Chengyong Yang; Curtis Gehman; Danwei Guo; Rola K. Irikat; Warren Tom; Nick J. Fantin; Donna M. Muzny; Richard A. Gibbs; Abstr Act
BACKGROUND Whole-genome sequencing may revolutionize medical diagnostics through rapid identification of alleles that cause disease. However, even in cases with simple patterns of inheritance and unambiguous diagnoses, the relationship between disease phenotypes and their corresponding genetic changes can be complicated. Comprehensive diagnostic assays must therefore identify all possible DNA changes in each haplotype and determine which are responsible for the underlying disorder. The high number of rare, heterogeneous mutations present in all humans and the paucity of known functional variants in more than 90% of annotated genes make this challenge particularly difficult. Thus, the identification of the molecular basis of a genetic disease by means of whole-genome sequencing has remained elusive. We therefore aimed to assess the usefulness of human whole-genome sequencing for genetic diagnosis in a patient with Charcot-Marie-Tooth disease. METHODS We identified a family with a recessive form of Charcot-Marie-Tooth disease for which the genetic basis had not been identified. We sequenced the whole genome of the proband, identified all potential functional variants in genes likely to be related to the disease, and genotyped these variants in the affected family members. RESULTS We identified and validated compound, heterozygous, causative alleles in SH3TC2 (the SH3 domain and tetratricopeptide repeats 2 gene), involving two mutations, in the proband and in family members affected by Charcot-Marie-Tooth disease. Separate subclinical phenotypes segregated independently with each of the two mutations; heterozygous mutations confer susceptibility to neuropathy, including the carpal tunnel syndrome. CONCLUSIONS As shown in this study of a family with Charcot-Marie-Tooth disease, whole-genome sequencing can identify clinically relevant variants and provide diagnostic information to inform the care of patients.
Journal of Biological Chemistry | 1996
Lynne V. Nazareth; Nancy L. Weigel
Aberrant activation of the androgen receptor through signaling pathways independent of androgen may be responsible for the progression of prostate tumors to the rapidly proliferating androgen-independent state. In this study, the effects of protein kinase A modulators on human androgen receptor activity were tested. Using an adenoviral DNA delivery system, we demonstrate that the androgen receptor can be activated by a protein kinase A activator, forskolin, in the absence of androgen when androgen receptor is co-transfected into monkey kidney CV1 cells or human prostate PC-3 cells with androgen-responsive reporters. Immunoblotting reveals that there is no significant change in androgen receptor protein level following forskolin treatment, suggesting that the enhanced activity is due to activation of the receptor. This activation can be blocked by a protein kinase A inhibitor peptide. Two potent anti-androgens, casodex and flutamide, can significantly reduce this activation, confirming that the ligand-independent pathway is an androgen receptor-mediated phenomenon. An intact DNA binding domain of the receptor is critical for this alternate signaling pathway since mutants with reduced DNA binding ability are inactive. The phosphorylation status of the androgen receptor or associated proteins may critically modulate receptor activity and should be considered when designing improved approaches to prostate cancer therapy.
Nature | 2011
Devin P. Locke; LaDeana W. Hillier; Wesley C. Warren; Kim C. Worley; Lynne V. Nazareth; Donna M. Muzny; Shiaw-Pyng Yang; Zhengyuan Wang; Asif T. Chinwalla; Patrick Minx; Makedonka Mitreva; Lisa Cook; Kim D. Delehaunty; Catrina C. Fronick; Heather K. Schmidt; Lucinda A. Fulton; Robert S. Fulton; Joanne O. Nelson; Vincent Magrini; Craig S. Pohl; Tina Graves; Chris Markovic; Andy Cree; Huyen Dinh; Jennifer Hume; Christie Kovar; Gerald Fowler; Gerton Lunter; Stephen Meader; Andreas Heger
‘Orang-utan’ is derived from a Malay term meaning ‘man of the forest’ and aptly describes the southeast Asian great apes native to Sumatra and Borneo. The orang-utan species, Pongo abelii (Sumatran) and Pongo pygmaeus (Bornean), are the most phylogenetically distant great apes from humans, thereby providing an informative perspective on hominid evolution. Here we present a Sumatran orang-utan draft genome assembly and short read sequence data from five Sumatran and five Bornean orang-utan genomes. Our analyses reveal that, compared to other primates, the orang-utan genome has many unique features. Structural evolution of the orang-utan genome has proceeded much more slowly than other great apes, evidenced by fewer rearrangements, less segmental duplication, a lower rate of gene family turnover and surprisingly quiescent Alu repeats, which have played a major role in restructuring other primate genomes. We also describe a primate polymorphic neocentromere, found in both Pongo species, emphasizing the gradual evolution of orang-utan genome structure. Orang-utans have extremely low energy usage for a eutherian mammal, far lower than their hominid relatives. Adding their genome to the repertoire of sequenced primates illuminates new signals of positive selection in several pathways including glycolipid metabolism. From the population perspective, both Pongo species are deeply diverse; however, Sumatran individuals possess greater diversity than their Bornean counterparts, and more species-specific variation. Our estimate of Bornean/Sumatran speciation time, 400,000 years ago, is more recent than most previous studies and underscores the complexity of the orang-utan speciation process. Despite a smaller modern census population size, the Sumatran effective population size (Ne) expanded exponentially relative to the ancestral Ne after the split, while Bornean Ne declined over the same period. Overall, the resources and analyses presented here offer new opportunities in evolutionary genomics, insights into hominid biology, and an extensive database of variation for conservation efforts.
Nature | 2010
Stephan C. Schuster; Webb Miller; Aakrosh Ratan; Lynn P. Tomsho; Belinda Giardine; Lindsay R. Kasson; Robert S. Harris; Desiree C. Petersen; Fangqing Zhao; Ji Qi; Can Alkan; Jeffrey M. Kidd; Yazhou Sun; Daniela I. Drautz; Pascal Bouffard; Donna M. Muzny; Jeffrey G. Reid; Lynne V. Nazareth; Qingyu Wang; Richard Burhans; Cathy Riemer; Nicola E. Wittekindt; Priya Moorjani; Elizabeth A. Tindall; Charles G. Danko; Wee Siang Teo; Anne M. Buboltz; Zhenhai Zhang; Qianyi Ma; Arno Oosthuysen
The genetic structure of the indigenous hunter-gatherer peoples of southern Africa, the oldest known lineage of modern human, is important for understanding human diversity. Studies based on mitochondrial and small sets of nuclear markers have shown that these hunter-gatherers, known as Khoisan, San, or Bushmen, are genetically divergent from other humans. However, until now, fully sequenced human genomes have been limited to recently diverged populations. Here we present the complete genome sequences of an indigenous hunter-gatherer from the Kalahari Desert and a Bantu from southern Africa, as well as protein-coding regions from an additional three hunter-gatherers from disparate regions of the Kalahari. We characterize the extent of whole-genome and exome diversity among the five men, reporting 1.3 million novel DNA differences genome-wide, including 13,146 novel amino acid variants. In terms of nucleotide substitutions, the Bushmen seem to be, on average, more different from each other than, for example, a European and an Asian. Observed genomic differences between the hunter-gatherers and others may help to pinpoint genetic adaptations to an agricultural lifestyle. Adding the described variants to current databases will facilitate inclusion of southern Africans in medical research efforts, particularly when family and medical histories can be correlated with genome-wide data.
Nature | 2014
Daniel W. Bellott; Jennifer F. Hughes; Helen Skaletsky; Laura G. Brown; Ting-Jan Cho; Natalia Koutseva; Sara Zaghlul; Tina Graves; Susie Rock; Colin Kremitzki; Robert S. Fulton; Shannon Dugan; Yan Ding; Donna Morton; Ziad Khan; Lora Lewis; Christian Buhay; Qiaoyan Wang; Jennifer Watt; Michael Holder; Sandy Lee; Lynne V. Nazareth; Jessica Alföldi; Steve Rozen; Donna M. Muzny; Wesley C. Warren; Richard A. Gibbs; Richard Wilson; David C. Page
The human X and Y chromosomes evolved from an ordinary pair of autosomes, but millions of years ago genetic decay ravaged the Y chromosome, and only three per cent of its ancestral genes survived. We reconstructed the evolution of the Y chromosome across eight mammals to identify biases in gene content and the selective pressures that preserved the surviving ancestral genes. Our findings indicate that survival was nonrandom, and in two cases, convergent across placental and marsupial mammals. We conclude that the gene content of the Y chromosome became specialized through selection to maintain the ancestral dosage of homologous X–Y gene pairs that function as broadly expressed regulators of transcription, translation and protein stability. We propose that beyond its roles in testis determination and spermatogenesis, the Y chromosome is essential for male viability, and has unappreciated roles in Turner’s syndrome and in phenotypic differences between the sexes in health and disease.
BMC Microbiology | 2007
Sarah K. Highlander; Kristina G. Hulten; Xiang Qin; Huaiyang Jiang; Shailaja Yerrapragada; Edward O. Mason; Yue Shang; Tiffany M. Williams; Régine M Fortunov; Yamei Liu; Okezie Igboeli; Joseph F. Petrosino; Madhan R. Tirumalai; Akif Uzman; George E. Fox; Ana Maria Cardenas; Donna M. Muzny; Lisa Hemphill; Yan Ding; Shannon Dugan; Peter R Blyth; Christian Buhay; Huyen Dinh; Alicia Hawes; Michael Holder; Christie Kovar; Sandra L. Lee; Wen Liu; Lynne V. Nazareth; Qiaoyan Wang
BackgroundCommunity acquired (CA) methicillin-resistant Staphylococcus aureus (MRSA) increasingly causes disease worldwide. USA300 has emerged as the predominant clone causing superficial and invasive infections in children and adults in the USA. Epidemiological studies suggest that USA300 is more virulent than other CA-MRSA. The genetic determinants that render virulence and dominance to USA300 remain unclear.ResultsWe sequenced the genomes of two pediatric USA300 isolates: one CA-MRSA and one CA-methicillin susceptible (MSSA), isolated at Texas Childrens Hospital in Houston. DNA sequencing was performed by Sanger dideoxy whole genome shotgun (WGS) and 454 Life Sciences pyrosequencing strategies. The sequence of the USA300 MRSA strain was rigorously annotated. In USA300-MRSA 2658 chromosomal open reading frames were predicted and 3.1 and 27 kilobase (kb) plasmids were identified. USA300-MSSA contained a 20 kb plasmid with some homology to the 27 kb plasmid found in USA300-MRSA. Two regions found in US300-MRSA were absent in USA300-MSSA. One of these carried the arginine deiminase operon that appears to have been acquired from S. epidermidis. The USA300 sequence was aligned with other sequenced S. aureus genomes and regions unique to USA300 MRSA were identified.ConclusionUSA300-MRSA is highly similar to other MRSA strains based on whole genome alignments and gene content, indicating that the differences in pathogenesis are due to subtle changes rather than to large-scale acquisition of virulence factor genes. The USA300 Houston isolate differs from another sequenced USA300 strain isolate, derived from a patient in San Francisco, in plasmid content and a number of sequence polymorphisms. Such differences will provide new insights into the evolution of pathogens.
Nature | 2012
Jennifer F. Hughes; Helen Skaletsky; Laura G. Brown; Tina Graves; Robert S. Fulton; Shannon Dugan; Yan Ding; Christian Buhay; Colin Kremitzki; Qiaoyan Wang; Hua Shen; Michael Holder; Donna Villasana; Lynne V. Nazareth; Andrew Cree; Laura Courtney; Joelle Veizer; Holland Kotkiewicz; Ting-Jan Cho; Natalia Koutseva; Steve Rozen; Donna M. Muzny; Wesley C. Warren; Richard A. Gibbs; Richard Wilson; David C. Page
The human X and Y chromosomes evolved from an ordinary pair of autosomes during the past 200–300 million years. The human MSY (male-specific region of Y chromosome) retains only three percent of the ancestral autosomes’ genes owing to genetic decay. This evolutionary decay was driven by a series of five ‘stratification’ events. Each event suppressed X–Y crossing over within a chromosome segment or ‘stratum’, incorporated that segment into the MSY and subjected its genes to the erosive forces that attend the absence of crossing over. The last of these events occurred 30 million years ago, 5 million years before the human and Old World monkey lineages diverged. Although speculation abounds regarding ongoing decay and looming extinction of the human Y chromosome, remarkably little is known about how many MSY genes were lost in the human lineage in the 25 million years that have followed its separation from the Old World monkey lineage. To investigate this question, we sequenced the MSY of the rhesus macaque, an Old World monkey, and compared it to the human MSY. We discovered that during the last 25 million years MSY gene loss in the human lineage was limited to the youngest stratum (stratum 5), which comprises three percent of the human MSY. In the older strata, which collectively comprise the bulk of the human MSY, gene loss evidently ceased more than 25 million years ago. Likewise, the rhesus MSY has not lost any older genes (from strata 1–4) during the past 25 million years, despite its major structural differences to the human MSY. The rhesus MSY is simpler, with few amplified gene families or palindromes that might enable intrachromosomal recombination and repair. We present an empirical reconstruction of human MSY evolution in which each stratum transitioned from rapid, exponential loss of ancestral genes to strict conservation through purifying selection.
Nature | 2014
Lucia Carbone; R. Alan Harris; Sante Gnerre; Krishna R. Veeramah; Belen Lorente-Galdos; John Huddleston; Thomas J. Meyer; Javier Herrero; Christian Roos; Bronwen Aken; Fabio Anaclerio; Nicoletta Archidiacono; Carl Baker; Daniel Barrell; Mark A. Batzer; Kathryn Beal; Antoine Blancher; Craig Bohrson; Markus Brameier; Michael S. Campbell; Claudio Casola; Giorgia Chiatante; Andrew Cree; Annette Damert; Pieter J. de Jong; Laura Dumas; Marcos Fernandez-Callejo; Paul Flicek; Nina V. Fuchs; Ivo Gut
Gibbons are small arboreal apes that display an accelerated rate of evolutionary chromosomal rearrangement and occupy a key node in the primate phylogeny between Old World monkeys and great apes. Here we present the assembly and analysis of a northern white-cheeked gibbon (Nomascus leucogenys) genome. We describe the propensity for a gibbon-specific retrotransposon (LAVA) to insert into chromosome segregation genes and alter transcription by providing a premature termination site, suggesting a possible molecular mechanism for the genome plasticity of the gibbon lineage. We further show that the gibbon genera (Nomascus, Hylobates, Hoolock and Symphalangus) experienced a near-instantaneous radiation ∼5 million years ago, coincident with major geographical changes in southeast Asia that caused cycles of habitat compression and expansion. Finally, we identify signatures of positive selection in genes important for forelimb development (TBX5) and connective tissues (COL1A1) that may have been involved in the adaptation of gibbons to their arboreal habitat.