Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where M. A. Kubiak is active.

Publication


Featured researches published by M. A. Kubiak.


Astrophysical Journal Supplement Series | 2012

INTERSTELLAR GAS FLOW PARAMETERS DERIVED FROM INTERSTELLAR BOUNDARY EXPLORER-Lo OBSERVATIONS IN 2009 AND 2010: ANALYTICAL ANALYSIS

E. Möbius; Peter Bochsler; M. Bzowski; D. Heirtzler; M. A. Kubiak; Harald Kucharek; M. A. Lee; T. Leonard; N. A. Schwadron; X. Wu; S. A. Fuselier; Geoffrey Crew; D. J. McComas; L. Petersen; Lukas A. Saul; D. Valovcin; R. Vanderspek; Peter Wurz

Neutral atom imaging of the interstellar gas flow in the inner heliosphere provides the most detailed information on physical conditions of the surrounding interstellar medium (ISM) and its interaction with the heliosphere. The Interstellar Boundary Explorer (IBEX) measured neutral H, He, O, and Ne for three years. We compare the He and combined O + Ne flow distributions for two interstellar flow passages in 2009 and 2010 with an analytical calculation, which is simplified because the IBEX orientation provides observations at almost exactly the perihelion of the gas trajectories. This method allows separate determination of the key ISM parameters: inflow speed, longitude, and latitude, as well as temperature. A combined optimization, as in complementary approaches, is thus not necessary. Based on the observed peak position and width in longitude and latitude, inflow speed, latitude, and temperature are found as a function of inflow longitude. The latter is then constrained by the variation of the observed flow latitude as a function of observer longitude and by the ratio of the widths of the distribution in longitude and latitude. Identical results are found for 2009 and 2010: an He flow vector somewhat outside previous determinations (λISM∞ = 79. ◦ 0+3 . 0(−3. ◦ 5), βISM∞ =− 4. 9 ± 0. 2, VISM∞ = 23.5 + 3.0(−2.0) km s −1 , THe = 5000–8200 K), suggesting a larger inflow longitude and lower speed. The O + Ne temperature range, T O+N e = 5300–9000 K, is found to be close to the upper range for He and consistent with an isothermal medium for all species within current uncertainties.


Science | 2009

Direct Observations of Interstellar H, He, and O by the Interstellar Boundary Explorer

E. Möbius; Peter Bochsler; M. Bzowski; Geoffrey Crew; H. O. Funsten; S. A. Fuselier; A. G. Ghielmetti; D. Heirtzler; Vladislav V. Izmodenov; M. A. Kubiak; Harald Kucharek; M. A. Lee; T. Leonard; D. J. McComas; L. Petersen; Lukas A. Saul; Jürgen Scheer; N. A. Schwadron; M. Witte; Peter Wurz

Whats Happening in the Heliosphere The influence of the Sun is felt well beyond the orbits of the planets. The solar wind is a stream of charged particles emanating from the Sun that carves a bubble in interstellar space known as the heliosphere and shrouds the entire solar system. The edge of the heliosphere, the region where the solar wind interacts with interstellar space, is largely unexplored. Voyager 1 and 2 crossed this boundary in 2004 and 2007, respectively, providing detailed but only localized information. In this issue (see the cover), McComas et al. (p. 959, published online 15 October), Fuselier et al. (p. 962, published online 15 October), Funsten et al. (p. 964, published online 15 October), and Möbius et al. (p. 969, published online 15 October) present data taken by NASAs Interstellar Boundary Explorer (IBEX). Since early 2009, IBEX has been building all-sky maps of the emissions of energetic neutral atoms produced at the boundary between the heliosphere and the interstellar medium. These maps have unexpectedly revealed a narrow band of emission that bisects the two Voyager locations at energies ranging from 0.2 to 6 kiloelectron volts. Emissions from the band are two- to threefold brighter than outside the band, in contrast to current models that predict much smaller variations across the sky. By comparing the IBEX observations with models of the heliosphere, Schwadron et al. (p. 966, published online 15 October) show that to date no model fully explains the observations. The model they have developed suggests that the interstellar magnetic field plays a stronger role than previously thought. In addition to the all-sky maps, IBEX measured the signatures of H, He, and O flowing into the heliosphere from the interstellar medium. In a related report, Krimigis et al. (p. 971, published online 15 October) present an all-sky image of energetic neutral atoms with energies ranging between 6 and 13 kiloelectron volts obtained with the Ion and Neutral Camera onboard the Cassini spacecraft orbiting Saturn. It shows that parts of the structure observed by IBEX extend to high energies. These data indicate that the shape of the heliosphere is not consistent with that of a comet aligned in the direction of the Suns travel through the galaxy as was previously thought. Detection of H, He, and O flowing into the heliosphere from the interstellar medium tells us about our local interstellar environment. Neutral gas of the local interstellar medium flows through the inner solar system while being deflected by solar gravity and depleted by ionization. The dominating feature in the energetic neutral atom Interstellar Boundary Explorer (IBEX) all-sky maps at low energies is the hydrogen, helium, and oxygen interstellar gas flow. The He and O flow peaked around 8 February 2009 in accordance with gravitational deflection, whereas H dominated after 26 March 2009, consistent with approximate balance of gravitational attraction by solar radiation pressure. The flow distributions arrive from a few degrees above the ecliptic plane and show the same temperature for He and O. An asymmetric O distribution in ecliptic latitude points to a secondary component from the outer heliosheath.


Astrophysical Journal Supplement Series | 2012

THE FIRST THREE YEARS OF IBEX OBSERVATIONS AND OUR EVOLVING HELIOSPHERE

D. J. McComas; M. A. Dayeh; F. Allegrini; M. Bzowski; Robert DeMajistre; K. Fujiki; H. O. Funsten; S. A. Fuselier; Mike Gruntman; Paul Henry Janzen; M. A. Kubiak; Harald Kucharek; G. Livadiotis; E. Möbius; Daniel B. Reisenfeld; M. Reno; N. A. Schwadron; J. M. Sokół; Munetoshi Tokumaru

This study provides, for the first time, complete and validated observations from the first three years (2009-2011) of the Interstellar Boundary Explorer (IBEX) mission. Energetic neutral atom (ENA) fluxes are corrected for both the time-variable cosmic ray background and for orbit-by-orbit variations in their probability of surviving en route from the outer heliosphere in to 1 AU where IBEX observes them. In addition to showing all six six-month maps, we introduce new annual ram and anti-ram maps, which can be produced without the need for algorithm-dependent Compton-Getting corrections. Together, the ENA maps, data, and supporting documentation presented here support the full release of these data to the broader scientific community and provide the citable reference for them. In addition, we show that heliospheric ENA emissions have been decreasing over the epoch from 2009 to 2011 with the IBEX Ribbon decreasing by the largest fraction and only the heliotail (which is offset from the down wind direction by the interstellar magnetic field) showing essentially no reduction and actually some increase. Finally, we show how the much more complete observations provided here strongly indicate a quite direct and latitude-dependent solar wind source of the Ribbon.


The Astrophysical Journal | 2015

Warmer Local Interstellar Medium: A Possible Resolution of the Ulysses-IBEX Enigma

D. J. McComas; M. Bzowski; Priscilla C. Frisch; S. A. Fuselier; M. A. Kubiak; Harald Kucharek; T. Leonard; E. Möbius; N. A. Schwadron; J. M. Sokół; P. Swaczyna; M. Witte

Interstellar Boundary Explorer (IBEX) measurements from 2009-2010 identified a set of possible solutions with very tight coupling between the interstellar He inflow longitude, latitude, speed, and temperature. The center of this allowable parameter space suggested that the heliosphere could be moving more slowly and in a slightly different direction with respect to the interstellar medium than indicated by earlier Ulysses observations. In this study we examine data from 2012-2014 and compare results from an analytic analysis and a detailed computer model. For observations where the IBEX spacecraft pointing is near the ecliptic plane, the latest measurements indicate a different portion of IBEXs four-dimensional tube of possible parameters—one that is more consistent with the Ulysses flow direction and speed, but with a much higher temperature. Together, the current combined IBEX/Ulysses values we obtain are V ISM∞ ~ 26 km s–1, λISM∞ ~ 75°, βISM∞ ~ –5°, and T He∞ ~ 7000-9500 K. These indicate that the heliosphere is in a substantially warmer region of the interstellar medium than thought from the earlier Ulysses observations alone, and that this warmer region may be roughly isothermal. However, measurements taken when IBEX was pointing ~5° south of the ecliptic are inconsistent with this solution and suggest a slower speed, lower temperature, and flow direction similar to IBEXs prior central values. IBEX measures much deeper into the tails of the distributions of the inflowing interstellar material than Ulysses did and these observations indicate that the heliospheres interstellar interaction is likely far more complex and interesting than previously appreciated.


Astrophysical Journal Supplement Series | 2015

LOCAL INTERSTELLAR MEDIUM: SIX YEARS OF DIRECT SAMPLING BY IBEX

D. J. McComas; M. Bzowski; S. A. Fuselier; Priscilla C. Frisch; André Galli; Vladislav V. Izmodenov; Olga Katushkina; M. A. Kubiak; M. A. Lee; T. Leonard; E. Möbius; J. Park; N. A. Schwadron; J. M. Sokół; P. Swaczyna; Brian E. Wood; Peter Wurz

The Interstellar Boundary Explorer (IBEX) has been directly observing neutral atoms from the local interstellar medium for the last six years (2009–2014). This paper ties together the 14 studies in this Astrophysical Journal Supplement Series Special Issue, which collectively describe the IBEX interstellar neutral results from this epoch and provide a number of other relevant theoretical and observational results. Interstellar neutrals interact with each other and with the ionized portion of the interstellar population in the “pristine” interstellar medium ahead of the heliosphere. Then, in the heliosphereʼs close vicinity, the interstellar medium begins to interact with escaping heliospheric neutrals. In this study, we compare the results from two major analysis approaches led by IBEX groups in New Hampshire and Warsaw. We also directly address the question of the distance upstream to the pristine interstellar medium and adjust both sets of results to a common distance of ~1000 AU. The two analysis approaches are quite different, but yield fully consistent measurements of the interstellar He flow properties, further validating our findings. While detailed error bars are given for both approaches, we recommend that for most purposes, the community use “working values” of ~25.4 km s⁻¹, ~75°7 ecliptic inflow longitude, ~−5°1 ecliptic inflow latitude, and ~7500 K temperature at ~1000 AU upstream. Finally, we briefly address future opportunities for even better interstellar neutral observations to be provided by the Interstellar Mapping and Acceleration Probe mission, which was recommended as the next major Heliophysics mission by the NRCʼs 2013 Decadal Survey.


Astronomy and Astrophysics | 2013

Modulation of neutral interstellar He, Ne, O in the heliosphere. Survival probabilities and abundances at IBEX

M. Bzowski; J. M. Sokół; M. A. Kubiak; Harald Kucharek

Direct sampling of neutral interstellar (NIS) atoms by the Interstellar Boundary Explorer (IBEX) can potentially provide a complementary method for studying element abundances in the Local Interstellar Cloud and processes in the heliosphere interface.}{We set the stage for abundance-aimed in-depth analysis of measurements of NIS He, Ne, and O by IBEX and determine systematic differences between abundances derived from various calculation methods and their uncertainties.}{Using a model of ionization rates of the NIS species in the heliosphere, based on independent measurements of the solar wind and solar EUV radiation, we develop a time-dependent method of calculating the survival probabilities of NIS atoms from the termination shock (TS) of the solar wind to IBEX. With them, we calculate densities of these species along the Earths orbit and simulate the fluxes of NIS species as observed by IBEX. We study pairwise ratios of survival probabilities, densities and fluxes of NIS species at IBEX to calculate correction factors for inferring the abundances at TS.}{The analytic method to calculate the survival probabilities gives acceptable results only for He and Ne during low solar activity. For the remaining portions of the solar cycle, and at all times for O, a fully time dependent model should be used. Electron impact ionization is surprisingly important for NIS O. Interpreting the IBEX observations using the time dependent model yields the LIC Ne/O abundance of


The Astrophysical Journal | 2012

HELIOSPHERIC NEUTRAL ATOM SPECTRA BETWEEN 0.01 AND 6 keV FROM IBEX

S. A. Fuselier; F. Allegrini; M. Bzowski; H. O. Funsten; A. G. Ghielmetti; G. Gloeckler; D. Heirtzler; Paul Henry Janzen; M. A. Kubiak; Harald Kucharek; D. J. McComas; Eberhard Mobius; T. E. Moore; S. M. Petrinec; M. Quinn; Daniel B. Reisenfeld; Lukas A. Saul; Jürgen Scheer; N. A. Schwadron; K. J. Trattner; R. Vanderspek; Peter Wurz

0.16\pm40%


Astrophysical Journal Supplement Series | 2014

WARM BREEZE FROM THE STARBOARD BOW: A NEW POPULATION OF NEUTRAL HELIUM IN THE HELIOSPHERE

M. A. Kubiak; M. Bzowski; J. M. Sokół; P. Swaczyna; S. Grzedzielski; D. B. Alexashov; Vladislav V. Izmodenov; E. Möbius; T. Leonard; S. A. Fuselier; Peter Wurz; D. J. McComas

. The uncertainty is mostly due to uncertainties in the ionization rates and in the NIS gas flow vector.}{The Ne/He, O/He and Ne/O ratios for survival probabilities, local densities, and fluxes scaled to TS systematically differ and thus an analysis based only on survival probabilities or densities is not recommended, except the Ne/O abundance for observations at low solar activity.


Astronomy and Astrophysics | 2014

Neutral interstellar He parameters in front of the heliosphere 1994-2007

M. Bzowski; M. A. Kubiak; M. Hlond; J. M. Sokół; M. Banaszkiewicz; M. Witte

Since 2008 December, the Interstellar Boundary Explorer (IBEX) has been making detailed observations of neutrals from the boundaries of the heliosphere using two neutral atom cameras with overlapping energy ranges. The unexpected, yet defining feature discovered by IBEX is a Ribbon that extends over the energy range from about 0.2 to 6 keV. This Ribbon is superposed on a more uniform, globally distributed heliospheric neutral population. With some important exceptions, the focus of early IBEX studies has been on neutral atoms with energies greater than ∼0.5 keV. With nearly three years of science observations, enough low-energy neutral atom measurements have been accumulated to extend IBEX observations to energies less than ∼0.5 keV. Using the energy overlap of the sensors to identify and remove backgrounds, energy spectra over the entire IBEX energy range are produced. However, contributions by interstellar neutrals to the energy spectrum below 0.2 keV may not be completely removed. Compared with spectra at higher energies, neutral atom spectra at lower energies do not vary much from locationtolocationinthesky,includinginthedirectionoftheIBEXRibbon.Neutralfluxesareusedtoshowthatlow energy ions contribute approximately the same thermal pressure as higher energy ions in the heliosheath. However, contributions to the dynamic pressure are very high unless there is, for example, turbulence in the heliosheath with fluctuations of the order of 50‐100 km s −1 .


Astrophysical Journal Supplement Series | 2015

INTERSTELLAR NEUTRAL HELIUM IN THE HELIOSPHERE FROM IBEX OBSERVATIONS. III. MACH NUMBER OF THE FLOW, VELOCITY VECTOR, AND TEMPERATURE FROM THE FIRST SIX YEARS OF MEASUREMENTS

M. Bzowski; P. Swaczyna; M. A. Kubiak; J. M. Sokół; S. A. Fuselier; André Galli; D. Heirtzler; Harald Kucharek; T. Leonard; D. J. McComas; E. Möbius; N. A. Schwadron; Peter Wurz

We investigate the signals from neutral helium atoms observed in situ from Earth orbit in 2010 by the Interstellar Boundary Explorer (IBEX). The full helium signal observed during the 2010 observation season can be explained as a superposition of pristine neutral interstellar He gas and an additional population of neutral helium that we call the Warm Breeze. The Warm Breeze is approximately 2 times slower and 2.5 times warmer than the primary interstellar He population, and its density in front of the heliosphere is ~7% that of the neutral interstellar helium. The inflow direction of the Warm Breeze differs by ~19° from the inflow direction of interstellar gas. The Warm Breeze seems to be a long-term, perhaps permanent feature of the heliospheric environment. It has not been detected earlier because it is strongly ionized inside the heliosphere. This effect brings it below the threshold of detection via pickup ion and heliospheric backscatter glow observations, as well as by the direct sampling of GAS/Ulysses. We discuss possible sources for the Warm Breeze, including (1) the secondary population of interstellar helium, created via charge exchange and perhaps elastic scattering of neutral interstellar He atoms on interstellar He+ ions in the outer heliosheath, or (2) a gust of interstellar He originating from a hypothetic wave train in the Local Interstellar Cloud. A secondary population is expected from models, but the characteristics of the Warm Breeze do not fully conform to modeling results. If, nevertheless, this is the explanation, IBEX-Lo observations of the Warm Breeze provide key insights into the physical state of plasma in the outer heliosheath. If the second hypothesis is true, the source is likely to be located within a few thousand AU from the Sun, which is the propagation range of possible gusts of interstellar neutral helium with the Warm Breeze characteristics against dissipation via elastic scattering in the Local Cloud. Whatever the nature of the Warm Breeze, its discovery exposes a critical new feature of our heliospheric environment.

Collaboration


Dive into the M. A. Kubiak's collaboration.

Top Co-Authors

Avatar

M. Bzowski

Polish Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

J. M. Sokół

Polish Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

D. J. McComas

Southwest Research Institute

View shared research outputs
Top Co-Authors

Avatar

N. A. Schwadron

University of New Hampshire

View shared research outputs
Top Co-Authors

Avatar

S. A. Fuselier

Southwest Research Institute

View shared research outputs
Top Co-Authors

Avatar

E. Möbius

University of New Hampshire

View shared research outputs
Top Co-Authors

Avatar

Harald Kucharek

University of New Hampshire

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

H. O. Funsten

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

P. Swaczyna

Polish Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge