M. A. Leonova
University of Michigan
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by M. A. Leonova.
Physical Review Letters | 2012
M. A. Leonova; J. A. Askari; K. N. Gordon; A. D. Krisch; J. Liu; V. S. Morozov; D. A. Nees; R. S. Raymond; D. W. Sivers; V. K. Wong; F. Hinterberger
Spin resonances can depolarize or spin flip a polarized beam. We studied 1st and higher order spin resonances with stored 2.1 GeV/c vertically polarized protons. The 1st order vertical (ν(y)) resonance caused almost full spin flip, while some higher order ν(y) resonances caused partial depolarization. The 1st order horizontal (ν(x)) resonance caused almost full depolarization, while some higher order ν(x) resonances again caused partial depolarization. Moreover, a 2nd order ν(x) resonance is about as strong as some 3rd order ν(x) resonances, while some 3rd order ν(y) resonances are much stronger than a 2nd order ν(y) resonance. One thought that ν(y) spin resonances are far stronger than ν(x), and that lower order resonances are stronger than higher order; the data do not support this.
SPIN PHYSICS: 18th International Spin Physics Symposium | 2009
V. S. Morozov; A. W. Chao; A. D. Krisch; M. A. Leonova; R. S. Raymond; D. W. Sivers; V. K. Wong; A. Ganshvili; R. Gebel; A. Lehrach; B. Lorentz; R. Maier; D. Prasuhn; H. Stockhorst; D. Welsch; F. Hinterberger; K. Ulbrich; A. Schnase; E. J. Stephenson; N. P. M. Brantjes; C. J. G. Onderwater; M. da Silva
The Chao matrix formalism allows analytic calculations of a beam’s polarization behavior inside a spin resonance. We recently tested its prediction of polarization oscillations occurring in a stored beam of polarized particles near a spin resonance. Using a 1.85 GeV/c polarized deuteron beam stored in COSY, we swept a new rf solenoid’s frequency rather rapidly through 400 Hz during 100 ms, while varying the distance between the sweep’s end frequency and the central frequency of an rf‐induced spin resonance. Our measurements of the deuteron’s polarization for sweeps ending near and inside the resonance agree with the Chao formalism’s predicted oscillations.
SPIN 2002: 15th International Spin Physics Symposium and Workshop on Polarized Electron Sources and Polarimeters | 2003
Vasiliy Morozov; B. B. Blinov; Z. B. Etienne; A. D. Krisch; M. A. Leonova; A. M. T. Lin; W. Lorenzon; C. C. Peters; D. W. Sivers; V. K. Wong; K. Yonehara; V. A. Anferov; P. Schwandt; E. J. Stephenson; B. von Przewoski; H. Sato
We recently studied the spin-flipping efficiency of an rf-dipole magnet using a 120-MeV horizontally polarized proton beam stored in the Indiana University Cyclotron Facility Cooler Ring, which contained a nearly full Siberian snake. We flipped the spin by ramping the rf dipoles frequency through an rf-induced depolarizing resonance. By adiabatically turning on the rf dipole, we minimized the beam loss. After optimizing the frequency ramp parameters, we used 100 multiple spin flips to measure a spin-flip efficiency of 99.63+/-0.05%. This result indicates that spin flipping should be possible in very-high-energy polarized storage rings, where Siberian snakes are certainly needed and only dipole rf-flipper magnets are practical.
SPIN 2002: 15th International Spin Physics Symposium and Workshop on Polarized Electron Sources and Polarimeters | 2003
V. S. Morozov; M. Q. Crawford; Z. B. Etienne; M. C. Kandes; A. D. Krisch; M. A. Leonova; D. W. Sivers; V. K. Wong; K. Yonehara; V. A. Anferov; H. O. Meyer; P. Schwandt; Edward J. Stephenson; B. von Przewoski
We recently studied the spin flipping of a 270 MeV vertically polarized deuteron beam stored in the IUCF Cooler Ring. We swept an rf solenoid’s frequency through an rf‐induced spin resonance and observed the effect on the beam’s vector and tensor polarizations. After optimizing the resonance crossing rate and setting the solenoid’s voltage to its maximum value, we obtained a spin‐flip efficiency of about 94 ± 1% for the vector polarization; we also observed a partial spin‐flip of the tensor polarization. We then used the rf‐induced resonance to measure the vector and tensor polarizations’ lifetimes at different distances from the resonance; the polarization lifetime ratio τvector/τtensor was about 1.9 ± 0.4.
Physical Review Letters | 2001
B. B. Blinov; Z. B. Etienne; A. D. Krisch; M. A. Leonova; W. Lorenzon; V. S. Morozov; C. C. Peters; V. K. Wong; K. Yonehara; V. A. Anferov; P. Schwandt; Edward J. Stephenson; B. von Przewoski; H. Sato
Physical Review Letters | 2004
M. A. Leonova; A. D. Krisch; V. S. Morozov; R. S. Raymond; V. K. Wong; R. Gebel; A. Lehrach; B. Lorentz; R. Maier; D. Prasuhn; A. Schnase; H. Stockhorst; Eversheim D; F. Hinterberger; K. Ulbrich
Physical Review Letters | 2009
V. S. Morozov; Alex Chao; A. D. Krisch; M. A. Leonova; R. S. Raymond; D. W. Sivers; V. K. Wong; A. M. Kondratenko
Physical Review Letters | 2009
V. S. Morozov; A. W. Chao; A. D. Krisch; M. A. Leonova; R. S. Raymond; D. W. Sivers; V. K. Wong; A. Garishvili; R. Gebel; A. Lehrach; B. Lorentz; R. Maier; D. Prasuhn; H. Stockhorst; D. Welsch; F. Hinterberger; Kondratenko Am
Physical Review Letters | 2003
V. S. Morozov; Z. B. Etienne; M. C. Kandes; A. D. Krisch; M. A. Leonova; D. W. Sivers; V. K. Wong; K. Yonehara; V. A. Anferov; H.O. Meyer; P. Schwandt; E. J. Stephenson; B. von Przewoski
arXiv: Accelerator Physics | 2009
M. A. Leonova; Alex Chao; E. D. Courant; A. D. Krisch; Vasiliy Morozov; R. S. Raymond; D. W. Sivers; J.M. Williams; V. K. Wong; A. Garishvili; R. Gebel; A. Lehrach; B. Lorentz; R. Maier; D. Prasuhn; H. Stockhorst; D. Welsch; F. Hinterberger; K. Ulbrich; Ya. S. Derbenev; A.M. Kondratenko; Y. F. Orlov; E.J. Stephenson; N. P. M. Brantjes; C. J. G. Onderwater; M. da Silva