M. Anerella
Brookhaven National Laboratory
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by M. Anerella.
IEEE Transactions on Applied Superconductivity | 2006
S.A. Gourlay; G. Ambrosio; N. Andreev; M. Anerella; E. Barzi; R. Bossert; S. Caspi; D.R. Dietderich; P. Ferracin; R. Gupta; A. Ghosh; A.R. Hafalia; C. R. Hannaford; M. Harrison; V. S. Kashikhin; V.V. Kashikhin; A.F. Lietzke; S. Mattafirri; A.D. McInturff; F. Nobrega; I. Novitsky; G. Sabbi; J. Schmazle; R. Stanek; D. Turrioni; P. Wanderer; R. Yamada; A.V. Zlobin
TUA2OR6 Magnet RD fax: 510-486-5310; e-mail: [email protected]). G. Ambrosio, N. Andreev, E. Barzi, R. Bossert, V. S. Kashikhin, V. V. Kashikhin, F. Nobrega, I. Novitsky, D. Turrioni, R. Yamada, and A.V. Zlobin are with Fermilab National Accelerator Laboratory, Batavia, IL 3 M. Anerella, A. Ghosh , , R. Gupta, M. Harrison, J. Schmazle, and P. Wanderer are with Brookhaven National Laboratory, Upton, NY.
IEEE Transactions on Applied Superconductivity | 2011
G. Ambrosio; N. Andreev; M. Anerella; E. Barzi; B. Bingham; D. Bocian; R. Bossert; S. Caspi; G. Chlachidize; D.R. Dietderich; J. Escallier; H. Felice; P. Ferracin; A. Ghosh; A. Godeke; R. Hafalia; R. Hannaford; G. Jochen; V.V. Kashikhin; M. J. Kim; P. Kovach; M.J. Lamm; A.D. McInturff; J. Muratore; F. Nobrega; I. Novitsky; D. Orris; E. Prebys; S. Prestemon; G. Sabbi
In December 2009 during its first cold test, LQS01, the first Long Nb3Sn Quadrupole made by LARP (LHC Accelerator Research Program, a collaboration of BNL, FNAL, LBNL and SLAC), reached its target field gradient of 200 T/m. This target was set in 2005 by the US Department of Energy, CERN and LARP, as a significant milestone toward the development of Nb3Sn quadrupoles for possible use in LHC luminosity upgrades. LQS01 is a 90 mm aperture, 3.7 m long quadrupole using Nb3Sn coils. The coil layout is equal to the layout used in the LARP Technological Quadrupoles (TQC and TQS models). Pre-stress and support are provided by a segmented aluminum shell pre-loaded using bladders and keys, similarly to the TQS models. After the first test the magnet was disassembled, reassembled with an optimized pre-stress, and reached 222 T/m at 4.5 K. In this paper we present the results of both tests and the next steps of the Long Quadrupole R&D.
IEEE Transactions on Applied Superconductivity | 2011
R. Gupta; M. Anerella; G. Ganetis; A. Ghosh; H. Kirk; Robert B. Palmer; Steve Plate; W. Sampson; Y. Shiroyanagi; P. Wanderer; Bruce L. Brandt; D. Cline; Alper Garren; J. Kolonko; R.M. Scanlan; Robert Weggel
This paper presents the goal and status of the high field High Temperature Superconductor (HTS) solenoid program funded through a series of SBIRs. The target of this R&D program is to build HTS coils that are capable of producing fields greater than 20 T when tested alone and approaching 40 T when tested in a background field magnet. The solenoid will be made with second generation (2G) high engineering current density HTS tape. To date, 17 HTS pancake coils have been built and tested in the temperature range from 20 K to 80 K. Quench protection, high stresses and minimization of degradation of conductor are some of the major challenges associated with this program.
IEEE Transactions on Applied Superconductivity | 2010
S. Caspi; G. Ambrosio; M. Anerella; E. Barzi; R. Bossert; D. W. Cheng; D.R. Dietderich; H. Felice; P. Ferracin; A. Ghosh; R. Hafalia; R. Hannaford; V.V. Kashikhin; D. Pasholk; G. Sabbi; J. Schmalzle; P. Wanderer; A.V. Zlobin
Future upgrades to machines like the Large Hadron Collider (LHC) at CERN will push accelerator magnets beyond 10 T forcing the replacement of NbTi superconductors with advanced superconductors such as Nb3Sn. In support of the LHC Phase-II upgrade, the US LHC Accelerator Research Program (LARP) is developing a large bore (120 mm) Nb3Sn Interaction Region (IR) quadrupole (HQ) capable of reaching 15 T at its conductor limit and gradients of 199 T/m at 4.4 K and 219 T/m at 1.9 K. The 1 m long, two-layer magnet, addresses coil alignment and accelerator quality features while exploring the magnet performance limits in terms of gradient, stress and structure. This paper summarizes and reports on the design, mechanical structure, coil windings, reaction and impregnation processes.
IEEE Transactions on Applied Superconductivity | 2011
R. Gupta; M. Anerella; J. Cozzolino; G. Ganetis; A. Ghosh; G.A. Greene; W. Sampson; Y. Shiroyanagi; P. Wanderer; A. F. Zeller
Quadrupoles in the fragment separator region of the Facility for Rare Isotope Beams (FRIB) will be subjected to very large heat loads (over 200 Watts) and an intense level of radiation (~10 MGy per year) into the coils of just the first magnet. Magnets made with High Temperature Superconductors (HTS) are advantageous over conventional superconducting magnets since they can remove these heat loads more efficiently at higher temperatures. The proposed design is based on second generation (2G) HTS which allows operation at ~50 K. 2G has been found to be highly radiation tolerant. The latest test results are summarized. The goal of this R&D program is to evaluate the viability of HTS in a real machine with magnets in a challenging environment where HTS offers a unique solution.
IEEE Transactions on Applied Superconductivity | 2012
H. Felice; G. Ambrosio; M. Anerella; D. Bocian; R. Bossert; S. Caspi; B. Collins; D. W. Cheng; G. Chlachidze; D.R. Dietderich; P. Ferracin; A. Godeke; A. Ghosh; A.R. Hafalia; J. Joseph; J. Krishnan; M. Marchevsky; G. Sabbi; J. Schmalzle; P. Wanderer; X. Wang; A.V. Zlobin
In the past two years the US LARP program carried out five tests on a quadrupole magnet aimed at the high luminosity upgrade of Large Hadron Collider (HiLumi-LHC). The 1-meter long, 120 mm bore IR quadrupole magnet (HQ) with a short sample gradient of 219 T/m at 1.9 K and a conductor peak field of 15 T is part of the US LHC Accelerator Research Program (LARP). In a series of tests, carried out at 4.4 K, the magnet reached a maximum “short-sample” performance of 86%. The tests exposed several shortcomings that are now being addressed in a Research & Development program. This paper summarizes the magnet test results, reveals findings, R&D actions and future improvements.
IEEE Transactions on Applied Superconductivity | 2016
P. Ferracin; G. Ambrosio; M. Anerella; A. Ballarino; H. Bajas; M. Bajko; B. Bordini; R. Bossert; D. W. Cheng; D.R. Dietderich; G. Chlachidze; L D Cooley; H. Felice; A. Ghosh; R. Hafalia; E F Holik; S. Izquierdo Bermudez; P. Fessia; Philippe Grosclaude; Michael Guinchard; M. Juchno; S. Krave; Friedrich Lackner; M. Marchevsky; Vittorio Marinozzi; F. Nobrega; L. Oberli; Heng Pan; Jorge Pérez; H. Prin
The High Luminosity (HiLumi) Large Hadron Collider (LHC) project has, as the main objective, to increase the LHC peak luminosity by a factor five and the integrated luminosity by a factor ten. This goal will be achieved mainly with a new interaction region layout, which will allow a stronger focusing of the colliding beams. The target will be to reduce the beam size in the interaction points by a factor of two, which requires doubling the aperture of the low-β (or inner triplet) quadrupole magnets. The use of Nb3Sn superconducting material and, as a result, the possibility of operating at magnetic field levels in the windings higher than 11 T will limit the increase in length of these quadrupoles, called MQXF, to acceptable levels. After the initial design phase, where the key parameters were chosen and the magnets conceptual design finalized, the MQXF project, a joint effort between the U.S. LHC Accelerator Research Program and the Conseil Européen pour la Recherche Nucléaire (CERN), has now entered the construction and test phase of the short models. Concurrently, the preparation for the development of the full-length prototypes has been initiated. This paper will provide an overview of the project status, describing and reporting on the performance of the superconducting material, the lessons learnt during the fabrication of superconducting coils and support structure, and the fine tuning of the magnet design in view of the start of the prototyping phase.
IEEE Transactions on Applied Superconductivity | 2008
R. Gupta; M. Anerella; A. Ghosh; J. Schmalzle; W. Sampson
The first quadrupole in the fragment separator region of the proposed Facility for rare isotope beams would be subjected to extremely high radiation and heat loads (~15 kW in the magnet and 5 kW/m in the coil). As a critical part of this proposal, a radiation resistant quadrupole made with first generation high temperature superconductor (HTS) has been built and tested. This paper summarizes design, construction and test results of this magnet that has been designed to operate at ~30 K to remove this heat economically. Of particular interest are the simulated energy deposition experiments that demonstrate the stable operation of this HTS magnet in the presence of these unprecedented loads. The next quadrupole will use second generation HTS and is expected to operate at 50 K or above for even more efficient energy removal.
IEEE Transactions on Applied Superconductivity | 2011
S. Caspi; G. Ambrosio; M. Anerella; E. Barzi; B. Bingham; R. Bossert; D. W. Cheng; G. Chlachidze; D.R. Dietderich; H. Felice; P. Ferracin; A. Ghosh; A.R. Hafalia; C. R. Hannaford; J. Joseph; V.V. Kashikhin; G. Sabbi; J. Schmalzle; P. Wanderer; W. Xiaorong; A.V. Zlobin
In support of the luminosity upgrade of the Large Hadron Collider (LHC), the US LHC Accelerator Research Program (LARP) has been developing a 1-meter long, 120 mm bore Nb3Sn IR quadrupole magnet (HQ). With a short sample gradient of 219 T/m at 1.9 K and a conductor peak field of 15 T, the magnet will operate under higher forces and stored-energy levels than that of any previous LARP magnet models. In addition, HQ has been designed to incorporate accelerator quality features such as precise coil alignment and adequate cooling. The first 6 coils (out of the 8 fabricated so far) have been assembled and used in two separate tests-HQ01a and HQ01b. This paper presents design parameters, summary of the assemblies, the mechanical behavior as well as the performance of HQ01a and HQ01b.
IEEE Transactions on Applied Superconductivity | 2007
G. Ambrosio; N. Andreev; M. Anerella; E. Barzi; R. Bossert; D.R. Dietderich; S. Feher; P. Ferracin; A. Ghosh; S.A. Gourlay; V.V. Kashikhin; A.F. Lietzke; A.D. McInturff; J. Muratore; F. Nobrega; G. Sabbi; J. Schmalzle; P. Wanderer; A.V. Zlobin
The LHC Accelerator Research Program (LARP) has a primary goal to develop, assemble, and test full size Nb3Sn quadrupole magnet models for a luminosity upgrade of the Large Hadron Collider (LHC). A major milestone in this development is to assemble and test, by the end of 2009, two 4 m-long quadrupole cold masses, which will be the first Nb3Sn accelerator magnet models approaching the length of real accelerator magnets. The design is based on the LARP Technological Quadrupoles (TQ), under development at FNAL and LBNL, with gradient higher than 200 T/m and aperture of 90 mm. The mechanical design will be chosen between two designs presently explored for the TQs: traditional collars and Al-shell based design (preloaded by bladders and keys). The fabrication of the first long quadrupole model is expected to start in the last quarter of 2007. Meanwhile the fabrication of 4 m-long racetrack coils started this year at BNL. These coils will be tested in an Al-shell based supporting structure developed at LBNL. Several challenges have to be addressed for the successful fabrication of long Nb3Sn coils. This paper presents these challenges with comments and solutions adopted or under study for these magnets. The coil design of these magnets, including conductor and insulation features, and quench protection studies are also presented.