Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where M. Assunta Dessì is active.

Publication


Featured researches published by M. Assunta Dessì.


Free Radical Biology and Medicine | 1999

Inhibition of peroxynitrite dependent DNA base modification and tyrosine nitration by the extra virgin olive oil-derived antioxidant hydroxytyrosol

Monica Deiana; Okezie I Aruoma; Maria de Lourdes Pires Bianchi; Jeremy P.E. Spencer; Harparkash Kaur; Barry Halliwell; Robert Aeschbach; Sebastiano Banni; M. Assunta Dessì; Francesco P. Corongiu

Hydroxytyrosol is one of the o-diphenolic compounds in extra virgin olive oil and has been suggested to be a potent antioxidant. The superoxide radical (O2*-) and nitric oxide (NO*) can react very rapidly to form peroxynitrite (ONOO ), a reactive tissue damaging species thought to be involved in the pathology of several chronic diseases. Hydroxytyrosol was highly protective against the peroxynitrite-dependent nitration of tyrosine and DNA damage by peroxynitrite in vitro. Given that extra virgin olive oil is consumed daily by many humans, hydroxytyrosol derived from this diet could conceivably provide a defense against damage by oxidants in vivo. The biological activity of hydroxytyrosol in vivo will depend on its intake, uptake and access to cellular compartments.


Free Radical Research | 2006

The fate of olive oil polyphenols in the gastrointestinal tract: implications of gastric and colonic microflora-dependent biotransformation.

Giulia Corona; Xenofon Tzounis; M. Assunta Dessì; Monica Deiana; Edward S. Debnam; Francesco Visioli; Jeremy P. E. Spencer

We have conducted a detailed investigation into the absorption, metabolism and microflora-dependent transformation of hydroxytyrosol (HT), tyrosol (TYR) and their conjugated forms, such as oleuropein (OL). Conjugated forms underwent rapid hydrolysis under gastric conditions, resulting in significant increases in the amount of free HT and TYR entering the small intestine. Both HT and TYR transferred across human Caco-2 cell monolayers and rat segments of jejunum and ileum and were subject to classic phase I/II biotransformation. The major metabolites identified were an O-methylated derivative of HT, glucuronides of HT and TYR and a novel glutathionylated conjugate of HT. In contrast, there was no absorption of OL in either model. However, OL was rapidly degraded by the colonic microflora resulting in the formation of HT. Our study provides additional information regarding the breakdown of complex olive oil polyphenols in the GI tract, in particular the stomach and the large intestine.


Food and Chemical Toxicology | 2010

Protective effect of simple phenols from extravirgin olive oil against lipid peroxidation in intestinal Caco-2 cells

Monica Deiana; Giulia Corona; Alessandra Incani; D Loru; Antonella Rosa; Angela Atzeri; M. Paola Melis; M. Assunta Dessì

Complex polyphenols present in extravirgin olive oil are not directly absorbed, but undergo gastrointestinal biotransformation, increasing the relative amount of tyrosol (TYR) and hydroxytyrosol (HT) entering the small and large intestine. We investigated the capacity of TYR and HT to inhibit the insult of dietary lipid hydroperoxydes on the intestinal mucosa, using cultures of Caco-2, a cell line with enterocyte-like features, and studying the effect of tert-butyl hydroperoxide (TBH) treatment on specific cell membrane lipid targets. The effect of homovanillic alcohol (HVA), metabolite of HT in humans and detected as metabolite of HT in Caco-2 cells, was also evaluated. Exposure to TBH induced a significant increase of the level of MDA, the formation of fatty acid hydroperoxides and 7-ketocholesterol and the loss of α-tocopherol. Pretreatment with both HT and HVA protected Caco-2 cells from oxidative damage: there was no significant detection of oxidation products and the level of α-tocopherol was preserved. Noteworthy, TYR also exerted a protective action against fatty acids degradation. In vitro trials, where the simple phenols were tested during linoleic acid and cholesterol oxidation, gave evidence of a direct scavenging of peroxyl radicals and suggested a hydrogen atom-donating activity.


Food and Chemical Toxicology | 2008

Protective effect of hydroxytyrosol and its metabolite homovanillic alcohol on H2O2 induced lipid peroxidation in renal tubular epithelial cells

Monica Deiana; Alessandra Incani; Antonella Rosa; Giulia Corona; Angela Atzeri; D Loru; M. Paola Melis; M. Assunta Dessì

We investigated the capacity of hydroxytyrosol (HT), 3,4-dihydroxyphenylethanol, and homovanillic alcohol (HVA), 4-hydroxy-3-methoxy-phenylethanol, to inhibit H(2)O(2) induced oxidative damage in LLC-PK1, a porcine kidney epithelial cell line, studying the effect of H(2)O(2) on specific cell membrane lipid targets, unsaturated fatty acids and cholesterol. Exposure to H(2)O(2) induced a significant increase of the level of MDA together with a disruption of the membrane structure, with the loss of unsaturated fatty acids, cholesterol and alpha-tocopherol, and the formation of fatty acids hydroperoxides and 7-ketocholesterol. Pretreatment with HT protected renal cells from oxidative damage: the level of membrane lipids was preserved and there was no significant detection of oxidation products. HVA exerted a comparable activity, thus both HT and HVA were able to prevent in renal cells the lipid peroxidation process that plays a central role in tubular cell injury.


European Journal of Lipid Science and Technology | 2002

Oxidative stability of polyunsaturated fatty acids: effect of squalene

M. Assunta Dessì; Monica Deiana; Billy W. Day; Antonella Rosa; Sebastiano Banni; Francesco P. Corongiu

The propensity of polyunsaturated fatty acids (PUFAs) to undergo oxidation plays an important role in the integrity of biological membrane and lipid containing foods. The ability of squalene (SQ), a naturally occurring dehydrotriterpene present in animal and plant tissues, to protect linoleic, linolenic, arachidonic and docosahexaenoic acids against temperature-dependent autoxidation and UVA (ultraviolet A, 320-380 nm) mediated oxidation was assessed. The oxidation of PUFAs was protected in varying degrees, with highest protection observed for linolenic, arachidonic and docosahexaenoic acids. Linoleic acid was less protected. At a molar ratio of 7:1 (PUFA:SQ) the inhibition of the oxidation process was 22% in the presence of linoleic acid and about 50% in presence of the other PUFAs tested. The different protection exerted by SQ against PUFAs with different degrees of unsaturation may be accounted for by the higher stability of octadecadienoic acid hydroperoxide isomers compared with respective PUFA hydroperoxides. Observing mild UVA-mediated oxidation and the temperature-dependent autoxidation reactions we found similarities in the oxidation pattern and the protection exerted by SQ. These findings suggest that the reaction of autoxidation is predominant and SQ acts mainly as peroxyl radical scavenger.


Molecular Nutrition & Food Research | 2009

Involvement of ERK, Akt and JNK signalling in H2O2-induced cell injury and protection by hydroxytyrosol and its metabolite homovanillic alcohol

Alessandra Incani; Monica Deiana; Giulia Corona; Katerina Vafeiadou; David Vauzour; M. Assunta Dessì; Jeremy P. E. Spencer

The olive oil polyphenol, hydroxytyrosol (HT), is believed to be capable of exerting protection against oxidative kidney injury. In this study we have investigated the ability of HT and its O-methylated metabolite, homovanillic alcohol (HVA) to protect renal cells against oxidative damage induced by hydrogen peroxide. We show that both compounds were capable of inhibiting hydrogen peroxide-induced kidney cell injury via an ability to interact with both MAP kinase and PI3 kinase signalling pathways, albeit at different concentrations. HT strongly inhibited death and prevented peroxide-induced increases in ERK1/2 and JNK1/2/3 phosphorylation at 0.3 microM, whilst HVA was effective at 10 microM. At similar concentrations, both compounds also prevented peroxide-induced reductions in Akt phosphorylation. We suggest that one potential protective effect exerted by olive oil polyphenols against oxidative kidney cell injury may be attributed to the interactions of HT and HVA with these important intracellular signalling pathways.


Chemistry and Physics of Lipids | 2008

Protective effect of the oligomeric acylphloroglucinols from Myrtus communis on cholesterol and human low density lipoprotein oxidation.

Antonella Rosa; M. Paola Melis; Monica Deiana; Angela Atzeri; Giovanni Appendino; Giulia Corona; Alessandra Incani; D Loru; M. Assunta Dessì

Myrtle (Myrtus communis L.), a culinary spice and flavouring agent for alcoholic beverages widespread in the Mediterranean area and especially in Sardinia, contains the structurally unique oligomeric non-prenylated acylphloroglucinols, semimyrtucommulone and myrtucommulone A, whose antioxidant activity was investigated during the oxidative modification of lipid molecules implicated in the onset of cardiovascular diseases. Both acylphloroglucinols showed powerful antioxidant properties during the thermal (140 degrees C), solvent-free degradation of cholesterol. Moreover, the pre-treatment with semimyrtucommulone and myrtucommulone A significantly preserved LDL from oxidative damage induced by Cu(2+) ions at 2h of oxidation, and showed remarkable protective effect on the reduction of polyunsaturated fatty acids and cholesterol, inhibiting the increase of their oxidative products (conjugated dienes fatty acids hydroperoxides, 7beta-hydroxycholesterol, and 7-ketocholesterol). Taking into account the widespread culinary use of myrtle leaves, the results of the present work qualify the natural compounds semimyrtucommulone and myrtucommulone A as interesting dietary antioxidants with potential antiatherogenicity.


Biochemical and Biophysical Research Communications | 2002

The antioxidant cocktail effective microorganism X (EM-X) inhibits oxidant-induced interleukin-8 release and the peroxidation of phospholipids in vitro

Monica Deiana; M. Assunta Dessì; Bin Ke; Yun-Fei Liang; Teruo Higa; Peter S. Gilmour; Ling-Sun Jen; Irfan Rahman; Okezie I. Aruoma

The antioxidant beverage EM-X is derived from the ferment of unpolished rice, papaya, and sea-weeds with effective microorganisms. Oxidative stress enhances the expression of proinflammatory genes, causing the release of the chemokine interleukin-8 (IL-8), which mediates a multitude of inflammatory events. Human alveolar epithelial cells (A549) were treated with H(2)O(2) (100 microM) or TNF-alpha (10ng/ml) alone or with the addition of EM-X (100 microl/ml), incubated for 20h, and the release of IL-8, measured using ELISA. EM-X inhibited the release of IL-8 at the transcriptional level in A549 cells. EM-X also decreased the iron/ascorbate dependent peroxidation of ox-brain phospholipids in a concentration dependent manner. A TEAC value of 0.10+/-0.05mM was obtained for EM-X, indicating antioxidant potential. We suggest that the anti-inflammatory and antioxidant properties of EM-X are dependent on the flavonoid contents of the beverage.


Journal of Food Science | 2012

Extraction and Separation of Volatile and Fixed Oils from Seeds of Myristica fragrans by Supercritical CO2: Chemical Composition and Cytotoxic Activity on Caco-2 Cancer Cells

Alessandra Piras; Antonella Rosa; Bruno Marongiu; Angela Atzeri; M. Assunta Dessì; Danilo Falconieri; Silvia Porcedda

UNLABELLED Isolation of volatile and fixed oils from nutmeg have been obtained by supercritical fractioned extraction with carbon dioxide. Extraction experiments were carried out at pressures of 90 and 250 bar and temperature of 40 °C. The extraction step performed at 90 bar produced a volatile fraction mainly formed by myristicin (32.8%), sabinene (16.1%), α-pinene (9.8%), β-pinene (9.4%), β-phellandrene (4.9%), safrole (4.1%) and terpinen-4-ol (3.6%). The oil yield relative to this step of the process was 1.4% by weight of the charge. The last extraction step at 250 bar produced a butter-like material (nutmeg butter). The yield of this step was 14.4% by weight. The most represented fatty acids of fixed oil from nutmeg were 14:0 (79.2%), 18:1 n-9 (7.4%) and 16:0 (6.1%), and in particular the unsaturated fatty acids 18:1 n-9 averaged 32.96 μg/mg of oil. The level of myristicin in the nutmeg essential and fixed oils was also directly quantified by reversed HPLC-DAD. Moreover, the essential oil obtained from nutmeg, as well as myristicin, showed a significant in vitro inhibitory effect on the growth of a colon cancer cell line (undifferentiated Caco-2 cells). PRACTICAL APPLICATION In this study, the chemical characterization and the anticancer activity of nutmeg oils obtained by supercritical extraction with carbon dioxide were investigated. This is important for their potential application in food and pharmaceutical industries.


Toxicology Letters | 2001

The effect of ferric-nitrilotriacetic acid on the profile of polyunsaturated fatty acids in the kidney and liver of rats

Monica Deiana; Okezie I Aruoma; Antonella Rosa; Valentina Crobu; Viviana Casu; Rosaria Piga; M. Assunta Dessì

Intraperitoneal injection of the iron-complex, ferric-nitrilotriacetate (Fe-NTA), induces renal proximal tubular damage associated with oxidative damage in vivo. Fe-NTA induced a time-dependent decrease of several polyunsaturated fatty acids (PUFA), together with increased conjugated diene values and decreased cellular levels of alpha-tocopherol and glutathione. At the time of maximum detectable oxidation (3 h), after the injection of a sublethal dose of Fe-NTA there were clear reductions in the peak values over the controls for several fatty acids notably, 20:5 (eicosapentaenoic acid) (36%), 22:6 (docosahexanoic acid) (30%), 20:3 n6 (eicosatrienoic acid) (30%) and 20:4 (arachidonic acid) (28%) in the kidney. Fewer fatty acids showed a reduction in their residual values in the liver. 20:5 was reduced by 45% and for the 18:3 n3 and 18:3 n6, reductions of 35%, respectively. The profile of PUFAs is sensitive to the oxidative damage due to Fe-NTA and this may find applications as oxidative biomarker model.

Collaboration


Dive into the M. Assunta Dessì's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Giovanni Appendino

University of Eastern Piedmont

View shared research outputs
Top Co-Authors

Avatar

D Loru

University of Cagliari

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paola Scano

University of Cagliari

View shared research outputs
Researchain Logo
Decentralizing Knowledge