Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where M. Paola Melis is active.

Publication


Featured researches published by M. Paola Melis.


Food and Chemical Toxicology | 2010

Protective effect of simple phenols from extravirgin olive oil against lipid peroxidation in intestinal Caco-2 cells

Monica Deiana; Giulia Corona; Alessandra Incani; D Loru; Antonella Rosa; Angela Atzeri; M. Paola Melis; M. Assunta Dessì

Complex polyphenols present in extravirgin olive oil are not directly absorbed, but undergo gastrointestinal biotransformation, increasing the relative amount of tyrosol (TYR) and hydroxytyrosol (HT) entering the small and large intestine. We investigated the capacity of TYR and HT to inhibit the insult of dietary lipid hydroperoxydes on the intestinal mucosa, using cultures of Caco-2, a cell line with enterocyte-like features, and studying the effect of tert-butyl hydroperoxide (TBH) treatment on specific cell membrane lipid targets. The effect of homovanillic alcohol (HVA), metabolite of HT in humans and detected as metabolite of HT in Caco-2 cells, was also evaluated. Exposure to TBH induced a significant increase of the level of MDA, the formation of fatty acid hydroperoxides and 7-ketocholesterol and the loss of α-tocopherol. Pretreatment with both HT and HVA protected Caco-2 cells from oxidative damage: there was no significant detection of oxidation products and the level of α-tocopherol was preserved. Noteworthy, TYR also exerted a protective action against fatty acids degradation. In vitro trials, where the simple phenols were tested during linoleic acid and cholesterol oxidation, gave evidence of a direct scavenging of peroxyl radicals and suggested a hydrogen atom-donating activity.


Food and Chemical Toxicology | 2008

Protective effect of hydroxytyrosol and its metabolite homovanillic alcohol on H2O2 induced lipid peroxidation in renal tubular epithelial cells

Monica Deiana; Alessandra Incani; Antonella Rosa; Giulia Corona; Angela Atzeri; D Loru; M. Paola Melis; M. Assunta Dessì

We investigated the capacity of hydroxytyrosol (HT), 3,4-dihydroxyphenylethanol, and homovanillic alcohol (HVA), 4-hydroxy-3-methoxy-phenylethanol, to inhibit H(2)O(2) induced oxidative damage in LLC-PK1, a porcine kidney epithelial cell line, studying the effect of H(2)O(2) on specific cell membrane lipid targets, unsaturated fatty acids and cholesterol. Exposure to H(2)O(2) induced a significant increase of the level of MDA together with a disruption of the membrane structure, with the loss of unsaturated fatty acids, cholesterol and alpha-tocopherol, and the formation of fatty acids hydroperoxides and 7-ketocholesterol. Pretreatment with HT protected renal cells from oxidative damage: the level of membrane lipids was preserved and there was no significant detection of oxidation products. HVA exerted a comparable activity, thus both HT and HVA were able to prevent in renal cells the lipid peroxidation process that plays a central role in tubular cell injury.


Chemistry and Physics of Lipids | 2008

Protective effect of the oligomeric acylphloroglucinols from Myrtus communis on cholesterol and human low density lipoprotein oxidation.

Antonella Rosa; M. Paola Melis; Monica Deiana; Angela Atzeri; Giovanni Appendino; Giulia Corona; Alessandra Incani; D Loru; M. Assunta Dessì

Myrtle (Myrtus communis L.), a culinary spice and flavouring agent for alcoholic beverages widespread in the Mediterranean area and especially in Sardinia, contains the structurally unique oligomeric non-prenylated acylphloroglucinols, semimyrtucommulone and myrtucommulone A, whose antioxidant activity was investigated during the oxidative modification of lipid molecules implicated in the onset of cardiovascular diseases. Both acylphloroglucinols showed powerful antioxidant properties during the thermal (140 degrees C), solvent-free degradation of cholesterol. Moreover, the pre-treatment with semimyrtucommulone and myrtucommulone A significantly preserved LDL from oxidative damage induced by Cu(2+) ions at 2h of oxidation, and showed remarkable protective effect on the reduction of polyunsaturated fatty acids and cholesterol, inhibiting the increase of their oxidative products (conjugated dienes fatty acids hydroperoxides, 7beta-hydroxycholesterol, and 7-ketocholesterol). Taking into account the widespread culinary use of myrtle leaves, the results of the present work qualify the natural compounds semimyrtucommulone and myrtucommulone A as interesting dietary antioxidants with potential antiatherogenicity.


Chemistry and Physics of Lipids | 2011

Protective role of arzanol against lipid peroxidation in biological systems

Antonella Rosa; Federica Pollastro; Angela Atzeri; Giovanni Appendino; M. Paola Melis; Monica Deiana; Alessandra Incani; D Loru; M. Assunta Dessì

This study examines the protective effect of arzanol, a pyrone-phloroglucinol etherodimer from Helichrysum italicum subsp. microphyllum, against the oxidative modification of lipid components induced by Cu(2+) ions in human low density lipoprotein (LDL) and by tert-butyl hydroperoxide (TBH) in cell membranes. LDL pre-treatment with arzanol significantly preserved lipoproteins from oxidative damage at 2h of oxidation, and showed a remarkable protective effect on the reduction of polyunsaturated fatty acids and cholesterol levels, inhibiting the increase of oxidative products (conjugated dienes fatty acids hydroperoxides, 7β-hydroxycholesterol, and 7-ketocholesterol). Arzanol, at non-cytotoxic concentrations, exerted a noteworthy protection on TBH-induced oxidative damage in a line of fibroblasts derived from monkey kidney (Vero cells) and in human intestinal epithelial cells (Caco-2), decreasing, in both cell lines, the formation of oxidative products (hydroperoxides and 7-ketocholesterol) from the degradation of unsaturated fatty acids and cholesterol. The cellular uptake and transepithelial transport of the compound were also investigated in Caco-2 cell monolayers. Arzanol appeared to accumulate in Caco-2 epithelial cells. This phenol was able to pass through the intestinal Caco-2 monolayers, the apparent permeability coefficients (P(app)) in the apical-to-basolateral and basolateral-to-apical direction at 2h were 1.93±0.36×10(-5) and 2.20±0.004×10(-5)cm/s, respectively, suggesting a passive diffusion pathway. The results of the work qualify arzanol as a potent natural antioxidant with a protective effect against lipid oxidation in biological systems.


Journal of Agricultural and Food Chemistry | 2008

Protective Effect of Vanilloids against tert-Butyl Hydroperoxide-Induced Oxidative Stress in Vero Cells Culture

Antonella Rosa; Angela Atzeri; Monica Deiana; M. Paola Melis; Alessandra Incani; Giulia Corona; D Loru; Giovanni Appendino; M. Assunta Dessì

This study investigated the effect of synthetic capsiate, a simplified analogue of capsiate, and vanillyl alcohol on the oxidative stress induced by tert-butyl hydroperoxide (TBH) in a line of fibroblasts derived from monkey kidney (Vero cells). In response to the TBH-mediated oxidative stress, a reduction of the levels of total unsaturated fatty acids and cholesterol was observed, and a rise in the concentrations of conjugated dienes fatty acids hydroperoxides and 7-ketocholesterol. Pretreatment with both synthetic capsiate and vanillyl alcohol preserved Vero cells from oxidative damage and showed a remarkable protective effect on the reduction of the levels of total unsaturated fatty acids and cholesterol, inhibiting the increase of MDA, conjugated dienes fatty acids hydroperoxides, and 7-ketocholesterol. Both compounds were effective against peroxidation of cell membrane lipids induced by TBH, with synthetic capsiate essentially acting as a pro-drug of vanillyl alcohol, its hydrophilic hydrolytic derivative.


Chemico-Biological Interactions | 2009

Protective effect and relation structure-activity of nonivamide and iododerivatives in several models of lipid oxidation.

Antonella Rosa; Giovanni Appendino; M. Paola Melis; Monica Deiana; Angela Atzeri; Incani Alessandra; Alberto Minassi; M. Assunta Dessì

The introduction of an iodine atom on the vanillyl moiety of nonivamide causes a switch in the vanilloid activity (TRPV1 antagonism versus TRPV1 desensitization) and nullifies the aversive properties of capsaicinoids. In the present study we investigated the effect of iodination in the vanillyl moiety on the antioxidant activity of capsaicinoids. To this aim, we have compared the protective effects of nonivamide and three iododerivatives, 2-iodononivamide (2IN), 5-iodononivamide (5IN), and 6-iodononivamide (6IN) in a series of in vitro models of lipid oxidation, namely the autoxidation and the FeCl(3)-mediated oxidation of linoleic acid at 37 degrees C and the thermal (140 degrees C), solvent-free oxidation of cholesterol. All tested compounds could protect linoleic acid and cholesterol against oxidative degradation, the order of potency being: nonivamide>5IN>6IN approximately 2IN. Our results show that, in general, the introduction of an iodine atom on the vanillyl moiety of nonivamide causes a decrease in the antioxidant activity, and this effect is sensitive to the position of iodine on the aromatic ring, with 5IN substantially retaining the efficacy of nonivamide to protect linoleic and cholesterol against free radical attack. Moreover, the pre-treatment with 5IN, at noncytotoxic concentrations, significantly preserved LDL from Cu(2+)-induced oxidative damage at 37 degrees C for 2h, inhibiting the reduction of polyunsaturated fatty acids and cholesterol and the increase of their oxidative products. The results of the present work suggest that 5IN exerts useful antioxidant properties in different in vitro systems of lipid peroxidation. This, coupled to its lacks of pungency and TRPV1 inhibiting properties, qualifies this phenolic compound as an attractive candidate for further investigations in vivo.


Redox biology | 2018

Olive oil polyphenols reduce oxysterols -induced redox imbalance and pro-inflammatory response in intestinal cells

Gessica Serra; Alessandra Incani; Gabriele Serreli; Laura Porru; M. Paola Melis; Carlo Ignazio Giovanni Tuberoso; Daniela Rossin; Fiorella Biasi; Monica Deiana

Dietary habits may strongly influence intestinal homeostasis. Oxysterols, the oxidized products of cholesterol present in cholesterol-containing foodstuffs, have been shown to exert pro-oxidant and pro-inflammatory effects, altering intestinal epithelial layer and thus contributing to the pathogenesis of human inflammatory bowel diseases and colon cancer. Extra virgin olive oil polyphenols possess antioxidant and anti-inflammatory properties, and concentrate in the intestinal lumen, where may help in preventing intestinal diseases. In the present study we evaluated the ability of an extra virgin olive oil phenolic extract to counteract the pro-oxidant and pro-inflammatory action of a representative mixture of dietary oxysterols in the human colon adenocarcinoma cell line (Caco-2) undergoing full differentiation into enterocyte-like cells. Oxysterols treatment significantly altered differentiated Caco-2 cells redox status, leading to oxidant species production and a decrease of GSH levels, after 1 h exposure, followed by an increase of cytokines production, IL-6 and IL-8, after 24 h. Oxysterol cell treatment also induced after 48 h an increase of NO release, due to the induction of iNOS. Pretreatment with the phenolic extract counteracted oxysterols effects, at least in part by modulating one of the main pathways activated in the cellular response to the action of oxysterols, the MAPK-NF-kB pathway. We demonstrated the ability of the phenolic extract to directly modulate p38 and JNK1/2 phosphorylation and activation of NF-kB, following its inhibitor IkB phosphorylation. The phenolic extract also inhibited iNOS induction, keeping NO concentration at the control level. Our results suggest a protective effect at intestinal level of extra virgin olive oil polyphenols, able to prevent or limit redox unbalance and the onset and progression of chronic intestinal inflammation.


Chemico-Biological Interactions | 2007

Evaluation of the antioxidant and cytotoxic activity of arzanol, a prenylated α-pyrone–phloroglucinol etherodimer from Helichrysum italicum subsp.microphyllum

Antonella Rosa; Monica Deiana; Angela Atzeri; Giulia Corona; Alessandra Incani; M. Paola Melis; Giovanni Appendino; M. Assunta Dessì


Food and Chemical Toxicology | 2007

Protective effect of olive oil minor polar components against oxidative damage in rats treated with ferric-nitrilotriacetate

Monica Deiana; Antonella Rosa; Giulia Corona; Angela Atzeri; Alessandra Incani; Francesco Visioli; M. Paola Melis; M. Assunta Dessì


Food Chemistry | 2009

Oxidative stability of lipid components of mullet (Mugil cephalus) roe and its product “bottarga”

Antonella Rosa; Paola Scano; M. Paola Melis; Monica Deiana; Angela Atzeri; M. Assunta Dessì

Collaboration


Dive into the M. Paola Melis's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

D Loru

University of Cagliari

View shared research outputs
Top Co-Authors

Avatar

Giovanni Appendino

University of Eastern Piedmont

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Juan C. Morales

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge