M. B. Gongalsky
Moscow State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by M. B. Gongalsky.
Scientific Reports | 2015
K. P. Tamarov; L. A. Osminkina; Sergey Zinovyev; Ksenia Maximova; J V Kargina; M. B. Gongalsky; Yury V. Ryabchikov; Ahmed Al-Kattan; A. P. Sviridov; Marc Sentis; A. V. Ivanov; V.N. Nikiforov; Andrei V. Kabashin; Victor Yu. Timoshenko
Offering mild, non-invasive and deep cancer therapy modality, radio frequency (RF) radiation-induced hyperthermia lacks for efficient biodegradable RF sensitizers to selectively target cancer cells and thus avoid side effects. Here, we assess crystalline silicon (Si) based nanomaterials as sensitizers for the RF-induced therapy. Using nanoparticles produced by mechanical grinding of porous silicon and ultraclean laser-ablative synthesis, we report efficient RF-induced heating of aqueous suspensions of the nanoparticles to temperatures above 45-50°C under relatively low nanoparticle concentrations (<1 mg/mL) and RF radiation intensities (1–5 W/cm2). For both types of nanoparticles the heating rate was linearly dependent on nanoparticle concentration, while laser-ablated nanoparticles demonstrated a remarkably higher heating rate than porous silicon-based ones for the whole range of the used concentrations from 0.01 to 0.4 mg/mL. The observed effect is explained by the Joule heating due to the generation of electrical currents at the nanoparticle/water interface. Profiting from the nanoparticle-based hyperthermia, we demonstrate an efficient treatment of Lewis lung carcinoma in vivo. Combined with the possibility of involvement of parallel imaging and treatment channels based on unique optical properties of Si-based nanomaterials, the proposed method promises a new landmark in the development of new modalities for mild cancer therapy.
Journal of Biophotonics | 2012
L. A. Osminkina; K. P. Tamarov; A. P. Sviridov; Rostislav A. Galkin; M. B. Gongalsky; Valery V. Solovyev; Andrey Kudryavtsev; Victor Yu. Timoshenko
Silicon nanoparticles (SiNPs) obtained by mechanical grinding of porous silicon have been used for visualization of living cells in vitro. It was found that SiNPs could penetrate into the cells without any cytotoxic effect up to the concentration of 100 μg/ml. The cell cytoplasm was observed to be filled by SiNPs, which exhibited bright photoluminescence at 1.6 eV. SiNPs could also act as photosensitizers of the singlet oxygen generation, which could be used in the photodynamic therapy of cancer. These properties of SiNPs are discussed in view of possible applications in theranostics (both in therapy and in diagnostics).
Journal of Materials Chemistry B | 2013
Pierre Blandin; Ksenia A. Maximova; M. B. Gongalsky; Juan F. Sánchez-Royo; Vladimir S. Chirvony; M. Sentis; Victor Yu. Timoshenko; Andrei V. Kabashin
An ultrashort laser-assisted method for fast production of concentrated aqueous solutions of ultrapure Si-based colloidal nanoparticles is reported. The method profits from the 3D geometry of femtosecond laser ablation of water-dispersed microscale colloids, prepared preliminarily by the mechanical milling of a Si wafer, in order to avoid strong concentration gradients in the ablated material and provide similar conditions of nanocluster growth within a relatively large laser caustics volume. We demonstrate the possibility for the fast synthesis of non-aggregated, low-size-dispersed, crystalline Si-based nanoparticles, whose size and surface oxidation can be controlled by changing the initial microcolloid concentration and the amount of dissolved oxygen in the water. Due to their much superior purity compared to the chemically synthesized counterparts and their photoluminescence response, the nanoparticles present the possibility for biological in vivo applications such as drug vectoring, imaging, and therapeutics.
Scientific Reports | 2016
M. B. Gongalsky; L. A. Osminkina; A. Pereira; A.A. Manankov; A.A. Fedorenko; A. N. Vasiliev; Valery V. Solovyev; A. A. Kudryavtsev; Marc Sentis; Andrei V. Kabashin; V.Y. Timoshenko
Crystalline silicon (Si) nanoparticles present an extremely promising object for bioimaging based on photoluminescence (PL) in the visible and near-infrared spectral regions, but their efficient PL emission in aqueous suspension is typically observed after wet chemistry procedures leading to residual toxicity issues. Here, we introduce ultrapure laser-synthesized Si-based quantum dots (QDs), which are water-dispersible and exhibit bright exciton PL in the window of relative tissue transparency near 800 nm. Based on the laser ablation of crystalline Si targets in gaseous helium, followed by ultrasound-assisted dispersion of the deposited films in physiological saline, the proposed method avoids any toxic by-products during the synthesis. We demonstrate efficient contrast of the Si QDs in living cells by following the exciton PL. We also show that the prepared QDs do not provoke any cytoxicity effects while penetrating into the cells and efficiently accumulating near the cell membrane and in the cytoplasm. Combined with the possibility of enabling parallel therapeutic channels, ultrapure laser-synthesized Si nanostructures present unique object for cancer theranostic applications.
Journal of Controlled Release | 2016
K. P. Tamarov; Wujun Xu; L. A. Osminkina; Sergey Zinovyev; Pasi Soininen; Andrey Kudryavtsev; M. B. Gongalsky; Azha Gaydarova; Ale Närvänen; Victor Yu. Timoshenko; Vesa-Pekka Lehto
One critical functionality of the carrier system utilized in targeted drug delivery is its ability to trigger the release of the therapeutic cargo once the carrier has reached its target. External triggering is an alluring approach as it can be applied in a precise spatiotemporal manner. In the present study, we achieved external triggering through the porous silicon (PSi) nanoparticles (NPs) by providing a pulse of infrared or radiofrequency radiation. The NPs were grafted with a temperature responsive polymer whose critical temperature was tailored to be slightly above 37°C. The polymer coating improved the biocompatibility of the NPs significantly in comparison with their uncoated counterparts. Radiation induced a rapid temperature rise, which resulted in the collapse of the polymer chains facilitating the cargo release. Both infrared and radiofrequency radiation were able to efficiently trigger the release of the encapsulated drug in vitro and induce significant cell death in comparison to the control groups. Radiofrequency radiation was found to be more efficient in vitro, and the treatment efficacy was verified in vivo in a lung carcinoma (3LL) mice model. After a single intratumoral administration of the carrier system combined with radiofrequency radiation, there was clear suppression of the growth of the carcinoma and a prolongation of the survival time of the animals. TOC IMAGE The temperature responsive (TR) polymer grafted on the surface of porous silicon nanoparticles (PSi NPs) changes its conformation in response to the heating induced by infrared or radiofrequency radiation. The conformation change allows the loaded doxorubicin to escape from the pores, achieving controlled drug release from TR PSi NPs, which displayed efficacy against malignant cells both in vitro and in vivo.
Nanoscale Research Letters | 2012
M. B. Gongalsky; Alexander Yu. Kharin; L. A. Osminkina; Victor Yu. Timoshenko; Jinyoung Jeong; Han Lee; Bong Hyun Chung
A significant enhancement of the photoluminescence (PL) efficiency is observed for aqueous suspensions of porous silicon nanoparticles (PSiNPs) coated by bioresorbable polymers, i.e., polylactic-co-glycolic acid (PLGA) and polyvinyl alcohol (PVA). PSiNPs with average size about 100 nm prepared by mechanical grinding of electrochemically etched porous silicon were dispersed in water to prepare the stable suspension. The inner hydrophobic PLGA layer prevents the PSiNPs from the dissolution in water, while the outer PVA layer makes the PSiNPs hydrophilic. The PL quantum yield of PLGA/PVA-coated PSiNPs was found to increase by three times for 2 weeks of the storage in water. The observed effect is explained by taking into account both suppression of the dissolution of PSiNPs in water and a process of the passivation of nonradiative defects in PSiNPs. The obtained results are interesting in view of the potential applications of PSiNPs in bioimaging.
Bulletin of Experimental Biology and Medicine | 2011
L. A. Osminkina; E. N. Luckyanova; M. B. Gongalsky; A. A. Kudryavtsev; A. Kh. Gaydarova; R. A. Poltavtseva; P. K. Kashkarov; V. Yu. Timoshenko; G. T. Sukhikh
In vitro experiments showed that stem and cancer cells retained their viability on the surface of porous silicon with 10-100 nm nanostructures, but their proliferation was inhibited. Silicon nanoparticles of 100 nm in size obtained by mechanical grinding of porous silicon films or crystal silicon plates in a concentration below 1 mg/ml in solution did not modify viability and proliferation of mouse fibroblast and human laryngeal cancer cells. Additional ultrasonic exposure of cancer cells in the presence of 1 mg/ml silicon nanoparticles added to nutrient medium led to complete destruction of cells or to the appearance of membrane defects blocking their proliferation and initiating their apoptotic death.
Applied Physics Letters | 2015
M. B. Gongalsky; Yu. V. Kargina; L. A. Osminkina; A. M. Perepukhov; M. V. Gulyaev; A. N. Vasiliev; Yu. A. Pirogov; A. V. Maximychev; V. Yu. Timoshenko
We propose porous silicon nanoparticles (PSi NPs) with natural oxide coating as biocompatible and bioresorbable contrast agents for magnetic resonant imaging (MRI). A strong shortening of the transversal proton relaxation time (T2) was observed for aqueous suspensions of PSi NPs, whereas the longitudinal relaxation time (T1) changed moderately. The longitudinal and transversal relaxivities are estimated to be 0.03 and 0.4 l/(g·s), respectively, which are promising for biomedical studies. The proton relaxation is suggested to undergo via the magnetic dipole-dipole interaction with Si dangling bonds on surfaces of PSi NPs. MRI experiments with phantoms have revealed the remarkable contrasting properties of PSi NPs for medical diagnostics.
Journal of Applied Physics | 2011
M. B. Gongalsky; A. Yu. Kharin; S. A. Zagorodskikh; L. A. Osminkina; V. Yu. Timoshenko
Photosensitization of singlet oxygen generation in porous silicon (PSi) was investigated by simultaneous measurements of the photoluminescence(PL) of siliconnanocrystals (nc-Si) and the infrared emission of the 1Δ-state of oxygen molecules at 1270 nm (0.98 eV) at room temperature. Photodegradation of the nc-Si PL properties was found to correlate with the efficiency of singlet oxygen generation. The quantum efficiency of singlet oxygen generation in PSi was estimated to be about 1%, while the lifetime of singlet oxygen was about fifteen ms. The kinetics of nc-Si PL intensity under cw excitation undergoes a power law dependence with the exponent dependent on the photonenergy of luminescence. The experimental results are explained with a model of photodegradation controlled by the diffusion of singlet oxygen molecules in a disordered structure of porous silicon.
Semiconductors | 2010
M. B. Gongalsky; E. A. Konstantinova; L. A. Osminkina; V. Yu. Timoshenko
Luminescence of gas-phase singlet oxygen optically sensitized by microporous silicon at room temperature is detected for the first time. At the same time, a photoinduced increase in the photoluminescence intensity of defects at the sample surface in oxygen atmosphere is observed. It is shown that mechanical grinding of porous silicon layers yields a decrease in the amount of photogenerated singlet oxygen.