Victor Yu. Timoshenko
Moscow State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Victor Yu. Timoshenko.
Scientific Reports | 2015
K. P. Tamarov; L. A. Osminkina; Sergey Zinovyev; Ksenia Maximova; J V Kargina; M. B. Gongalsky; Yury V. Ryabchikov; Ahmed Al-Kattan; A. P. Sviridov; Marc Sentis; A. V. Ivanov; V.N. Nikiforov; Andrei V. Kabashin; Victor Yu. Timoshenko
Offering mild, non-invasive and deep cancer therapy modality, radio frequency (RF) radiation-induced hyperthermia lacks for efficient biodegradable RF sensitizers to selectively target cancer cells and thus avoid side effects. Here, we assess crystalline silicon (Si) based nanomaterials as sensitizers for the RF-induced therapy. Using nanoparticles produced by mechanical grinding of porous silicon and ultraclean laser-ablative synthesis, we report efficient RF-induced heating of aqueous suspensions of the nanoparticles to temperatures above 45-50°C under relatively low nanoparticle concentrations (<1 mg/mL) and RF radiation intensities (1–5 W/cm2). For both types of nanoparticles the heating rate was linearly dependent on nanoparticle concentration, while laser-ablated nanoparticles demonstrated a remarkably higher heating rate than porous silicon-based ones for the whole range of the used concentrations from 0.01 to 0.4 mg/mL. The observed effect is explained by the Joule heating due to the generation of electrical currents at the nanoparticle/water interface. Profiting from the nanoparticle-based hyperthermia, we demonstrate an efficient treatment of Lewis lung carcinoma in vivo. Combined with the possibility of involvement of parallel imaging and treatment channels based on unique optical properties of Si-based nanomaterials, the proposed method promises a new landmark in the development of new modalities for mild cancer therapy.
Journal of Applied Physics | 2004
Minoru Fujii; Motofumi Usui; Shinji Hayashi; Egon Gross; D. Kovalev; N. Künzner; J. Diener; Victor Yu. Timoshenko
Formation of singlet oxygen in solution by using Si nanocrystals as photosensitizers has been demonstrated. It has been shown that the absorption band of 1,3-diphenylisobenzofuran (DPBF) in benzene centered at 416 nm decreases by irradiating green (514.5 nm) or red (632.8 nm) light if fresh porous Si powder is dispersed in the solution. The decomposition of DPBF was observed only when fresh porous Si was irradiated by light, i.e., without light irradiation no effects were observed. Furthermore, the effect was drastically suppressed if porous Si powder was annealed and a monolayer of oxide was formed on the surface of nanocrystals. The rate of the decomposition of DPBF was accelerated when the solution was bubbled by oxygen gas. These results indicate that electronic excitation of Si nanocrystals is transferred to molecular oxygen dissolved in solution, resulting in the formation of singlet oxygen. Generated singlet oxygen reacts with DPBF (1,4-cycloaddition reaction), forming endoperoxides, which in turn ...
Journal of Biophotonics | 2012
L. A. Osminkina; K. P. Tamarov; A. P. Sviridov; Rostislav A. Galkin; M. B. Gongalsky; Valery V. Solovyev; Andrey Kudryavtsev; Victor Yu. Timoshenko
Silicon nanoparticles (SiNPs) obtained by mechanical grinding of porous silicon have been used for visualization of living cells in vitro. It was found that SiNPs could penetrate into the cells without any cytotoxic effect up to the concentration of 100 μg/ml. The cell cytoplasm was observed to be filled by SiNPs, which exhibited bright photoluminescence at 1.6 eV. SiNPs could also act as photosensitizers of the singlet oxygen generation, which could be used in the photodynamic therapy of cancer. These properties of SiNPs are discussed in view of possible applications in theranostics (both in therapy and in diagnostics).
Journal of Materials Chemistry B | 2013
Pierre Blandin; Ksenia A. Maximova; M. B. Gongalsky; Juan F. Sánchez-Royo; Vladimir S. Chirvony; M. Sentis; Victor Yu. Timoshenko; Andrei V. Kabashin
An ultrashort laser-assisted method for fast production of concentrated aqueous solutions of ultrapure Si-based colloidal nanoparticles is reported. The method profits from the 3D geometry of femtosecond laser ablation of water-dispersed microscale colloids, prepared preliminarily by the mechanical milling of a Si wafer, in order to avoid strong concentration gradients in the ablated material and provide similar conditions of nanocluster growth within a relatively large laser caustics volume. We demonstrate the possibility for the fast synthesis of non-aggregated, low-size-dispersed, crystalline Si-based nanoparticles, whose size and surface oxidation can be controlled by changing the initial microcolloid concentration and the amount of dissolved oxygen in the water. Due to their much superior purity compared to the chemically synthesized counterparts and their photoluminescence response, the nanoparticles present the possibility for biological in vivo applications such as drug vectoring, imaging, and therapeutics.
Nanoscale Research Letters | 2012
L. A. Osminkina; Kirill A. Gonchar; Vladimir S Marshov; Konstantin V Bunkov; Dmitry Petrov; L. A. Golovan; Florian Talkenberg; Vladimir Sivakov; Victor Yu. Timoshenko
We study the structure and optical properties of arrays of silicon nanowires (SiNWs) with a mean diameter of approximately 100 nm and length of about 1–25 μm formed on crystalline silicon (c-Si) substrates by using metal-assisted chemical etching in hydrofluoric acid solutions. In the middle infrared spectral region, the reflectance and transmittance of the formed SiNW arrays can be described in the framework of an effective medium with the effective refractive index of about 1.3 (porosity, approximately 75%), while a strong light scattering for wavelength of 0.3 ÷ 1 μm results in a decrease of the total reflectance of 1%-5%, which cannot be described in the effective medium approximation. The Raman scattering intensity under excitation at approximately 1 μm increases strongly in the sample with SiNWs in comparison with that in c-Si substrate. This effect is related to an increase of the light-matter interaction time due to the strong scattering of the excitation light in SiNW array. The prepared SiNWs are discussed as a kind of ‘black silicon’, which can be formed in a large scale and can be used for photonic applications as well as in molecular sensing.
Journal of Controlled Release | 2016
K. P. Tamarov; Wujun Xu; L. A. Osminkina; Sergey Zinovyev; Pasi Soininen; Andrey Kudryavtsev; M. B. Gongalsky; Azha Gaydarova; Ale Närvänen; Victor Yu. Timoshenko; Vesa-Pekka Lehto
One critical functionality of the carrier system utilized in targeted drug delivery is its ability to trigger the release of the therapeutic cargo once the carrier has reached its target. External triggering is an alluring approach as it can be applied in a precise spatiotemporal manner. In the present study, we achieved external triggering through the porous silicon (PSi) nanoparticles (NPs) by providing a pulse of infrared or radiofrequency radiation. The NPs were grafted with a temperature responsive polymer whose critical temperature was tailored to be slightly above 37°C. The polymer coating improved the biocompatibility of the NPs significantly in comparison with their uncoated counterparts. Radiation induced a rapid temperature rise, which resulted in the collapse of the polymer chains facilitating the cargo release. Both infrared and radiofrequency radiation were able to efficiently trigger the release of the encapsulated drug in vitro and induce significant cell death in comparison to the control groups. Radiofrequency radiation was found to be more efficient in vitro, and the treatment efficacy was verified in vivo in a lung carcinoma (3LL) mice model. After a single intratumoral administration of the carrier system combined with radiofrequency radiation, there was clear suppression of the growth of the carcinoma and a prolongation of the survival time of the animals. TOC IMAGE The temperature responsive (TR) polymer grafted on the surface of porous silicon nanoparticles (PSi NPs) changes its conformation in response to the heating induced by infrared or radiofrequency radiation. The conformation change allows the loaded doxorubicin to escape from the pores, achieving controlled drug release from TR PSi NPs, which displayed efficacy against malignant cells both in vitro and in vivo.
Nanoscale Research Letters | 2012
M. B. Gongalsky; Alexander Yu. Kharin; L. A. Osminkina; Victor Yu. Timoshenko; Jinyoung Jeong; Han Lee; Bong Hyun Chung
A significant enhancement of the photoluminescence (PL) efficiency is observed for aqueous suspensions of porous silicon nanoparticles (PSiNPs) coated by bioresorbable polymers, i.e., polylactic-co-glycolic acid (PLGA) and polyvinyl alcohol (PVA). PSiNPs with average size about 100 nm prepared by mechanical grinding of electrochemically etched porous silicon were dispersed in water to prepare the stable suspension. The inner hydrophobic PLGA layer prevents the PSiNPs from the dissolution in water, while the outer PVA layer makes the PSiNPs hydrophilic. The PL quantum yield of PLGA/PVA-coated PSiNPs was found to increase by three times for 2 weeks of the storage in water. The observed effect is explained by taking into account both suppression of the dissolution of PSiNPs in water and a process of the passivation of nonradiative defects in PSiNPs. The obtained results are interesting in view of the potential applications of PSiNPs in bioimaging.
Colloids and Surfaces B: Biointerfaces | 2017
Subhra Jana; Anastasiya V. Kondakova; Svetlana N. Shevchenko; Eugene V. Sheval; Kirill A. Gonchar; Victor Yu. Timoshenko; A. N. Vasiliev
Halloysite nanotubes (HNTs) with immobilized silver (Ag) nanoparticles (NPs) were prepared by methods of wet chemistry and were characterized by using the transmission electron microscopy, x-ray diffraction, optical spectroscopy and experiments with E. coli bacteria in-vitro. It was found that Ag NPs with almost perfect crystalline structure and sizes from ∼9nm were mainly attached over the external surface of HNTs. The optical absorption measurement revealed a broad plasmonic resonance in the region of 400-600nm for HNTs with Ag NPs. The later samples exhibit bactericidal effect, which is more pronounced under illumination. A role of the plasmonic excitation of Ag NPs for their bioactive properties is discussed. The obtained results show that Ag NPs-decorated HNTs are promising agents for the antibacterial treatment.
RSC Advances | 2012
Mikhail V. Shestakov; Andrey N. Baranov; Victor K. Tikhomirov; Yan V. Zubavichus; Alexander S. Kuznetsov; A. A. Veligzhanin; Alexander Yu. Kharin; Roland Rösslhuber; Victor Yu. Timoshenko; Victor Moshchalkov
A newly structured nanocomposite material based on nanocrystalline ZnO/Yb2O3 has been prepared by thermal decomposition of Yb-doped zinc carbonate hydroxide. Transmission electron microscopy has revealed that the prepared nanopowder consists of ZnO nanocrystals of about 50 to 100 nm size decorated by attached smaller Yb2O3 nanocrystals of about 10 to 15 nm size. X-Ray absorption spectroscopy, in particular XANES and EXAFS, indicate the charge of Yb ions equals to +3 and their coordination is oxygen octahedral with the Yb–O and Yb–Yb interatomic distances the same as in bulk Yb2O3. Photoluminescence spectroscopy unambiguously proves an efficient excitation energy transfer from the ZnO nanocrystals to the Yb3+ ions. The energy transfer from the ZnO nanocrystals (absorption range from 250 to 400 nm) to the Yb3+ ions (emission range from 950 to 1100 nm) has been explained by a model, which considers the quantum cutting effect. The prepared nanocomposite is promising for application as a down-conversion layer for enhanced solar cells.
International Journal of Molecular Sciences | 2016
Elen Tolstik; L. A. Osminkina; Denis Akimov; Maksim B. Gongalsky; A. A. Kudryavtsev; Victor Yu. Timoshenko; Rainer Heintzmann; Vladimir Sivakov; Jürgen Popp
New approaches for visualisation of silicon nanoparticles (SiNPs) in cancer cells are realised by means of the linear and nonlinear optics in vitro. Aqueous colloidal solutions of SiNPs with sizes of about 10–40 nm obtained by ultrasound grinding of silicon nanowires were introduced into breast cancer cells (MCF-7 cell line). Further, the time-varying nanoparticles enclosed in cell structures were visualised by high-resolution structured illumination microscopy (HR-SIM) and micro-Raman spectroscopy. Additionally, the nonlinear optical methods of two-photon excited fluorescence (TPEF) and coherent anti-Stokes Raman scattering (CARS) with infrared laser excitation were applied to study the localisation of SiNPs in cells. Advantages of the nonlinear methods, such as rapid imaging, which prevents cells from overheating and larger penetration depth compared to the single-photon excited HR-SIM, are discussed. The obtained results reveal new perspectives of the multimodal visualisation and precise detection of the uptake of biodegradable non-toxic SiNPs by cancer cells and they are discussed in view of future applications for the optical diagnostics of cancer tumours.