Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where M. Bishr Omary is active.

Publication


Featured researches published by M. Bishr Omary.


Current Opinion in Cell Biology | 2002

‘Hard’ and ‘soft’ principles defining the structure, function and regulation of keratin intermediate filaments

Pierre A. Coulombe; M. Bishr Omary

Keratins make up the largest subgroup of intermediate filament proteins and represent the most abundant proteins in epithelial cells. They exist as highly dynamic networks of cytoplasmic 10-12 nm filaments that are obligate heteropolymers involving type I and type II keratins. The primary function of keratins is to protect epithelial cells from mechanical and nonmechanical stresses that result in cell death. Other emerging functions include roles in cell signaling, the stress response and apoptosis, as well as unique roles that are keratin specific and tissue specific. The role of keratins in a number of human skin, hair, ocular, oral and liver diseases is now established and meshes well with the evidence gathered from transgenic mouse models. The phenotypes associated with defects in keratin proteins are subject to significant modulation by functional redundancy within the family and modifier genes as well. Keratin filaments undergo complex regulation involving post-translational modifications and interactions with self and with various classes of associated proteins.


Journal of Cell Biology | 2006

New consensus nomenclature for mammalian keratins

Jürgen Schweizer; Paul Edward Bowden; Pierre A. Coulombe; Lutz Langbein; E. Birgitte Lane; Thomas M. Magin; Lois J. Maltais; M. Bishr Omary; David A.D. Parry; Michael A. Rogers; Mathew W. Wright

Keratins are intermediate filament–forming proteins that provide mechanical support and fulfill a variety of additional functions in epithelial cells. In 1982, a nomenclature was devised to name the keratin proteins that were known at that point. The systematic sequencing of the human genome in recent years uncovered the existence of several novel keratin genes and their encoded proteins. Their naming could not be adequately handled in the context of the original system. We propose a new consensus nomenclature for keratin genes and proteins that relies upon and extends the 1982 system and adheres to the guidelines issued by the Human and Mouse Genome Nomenclature Committees. This revised nomenclature accommodates functional genes and pseudogenes, and although designed specifically for the full complement of human keratins, it offers the flexibility needed to incorporate additional keratins from other mammalian species.


Gastroenterology | 2000

Cyclooxygenase 2 expression in Barrett's esophagus and adenocarcinoma: Ex vivo induction by bile salts and acid exposure

Vivian N. Shirvani; Rodica Ouatu-Lascar; Baljeet S. Kaur; M. Bishr Omary; George Triadafilopoulos

BACKGROUND & AIMS Barretts esophagus (BE) results from chronic, severe gastroesophageal reflux and predisposes to esophageal adenocarcinoma. Cyclooxygenase (COX)-2 is involved in chronic inflammation and epithelial cell growth. We investigated COX-2 expression in BE and esophageal adenocarcinoma to explore a potential relation between COX-2 expression and metaplasia or carcinogenesis. METHODS Endoscopic mucosal biopsy specimens of Barretts intestinal metaplasia (n = 30), Barretts dysplasia (n = 11), and esophageal adenocarcinoma (n = 5) were compared with normal esophagus (n = 46) and duodenum (n = 46) and analyzed by Western blotting and immunohistochemistry. RESULTS Immunoblots revealed constitutive expression of COX-2 in normal esophagus and duodenum. COX-2 protein expression was significantly higher in patients with Barretts metaplasia, dysplasia, and adenocarcinoma compared with normal squamous esophageal or columnar duodenal epithelia and was heterogenous in different regions of the BE surface. Immunohistochemistry revealed prominent staining in the glands of BE, dysplasia, and adenocarcinoma and faint staining in the basal layers of squamous esophagus and the surface of the duodenum. In response to pulses of acid or bile salts in an ex vivo organ culture system, COX-2 expression increased significantly in BE tissues, and this effect was attenuated by the selective COX-2 inhibitor NS-398. CONCLUSIONS The results show COX-2 expression in normal esophagus, which increases significantly in BE and esophageal adenocarcinoma. COX-2 is regulated ex vivo by exposure to acid or bile salts.


Journal of Clinical Investigation | 2007

The pancreatic stellate cell: a star on the rise in pancreatic diseases

M. Bishr Omary; Aurelia Lugea; Anson W. Lowe; Stephen J. Pandol

Pancreatic stellate cells (PaSCs) are myofibroblast-like cells found in the areas of the pancreas that have exocrine function. PaSCs are regulated by autocrine and paracrine stimuli and share many features with their hepatic counterparts, studies of which have helped further our understanding of PaSC biology. Activation of PaSCs induces them to proliferate, to migrate to sites of tissue damage, to contract and possibly phagocytose, and to synthesize ECM components to promote tissue repair. Sustained activation of PaSCs has an increasingly appreciated role in the fibrosis that is associated with chronic pancreatitis and with pancreatic cancer. Therefore, understanding the biology of PaSCs offers potential therapeutic targets for the treatment and prevention of these diseases.


Journal of Biological Chemistry | 1997

Apoptosis Generates Stable Fragments of Human Type I Keratins

Nam On Ku; Jian Liao; M. Bishr Omary

Type I and II keratins help maintain the structural integrity of epithelial cells. Since apoptosis involves progressive cell breakdown, we examined its effect on human keratin polypeptides 8, 18, and 19 (K8, K18, K19) that are expressed in simple-type epithelia as noncovalent type I (K18, K19) and type II (K8) heteropolymers. Apoptosis induces rapid hyperphosphorylation of most known K8/18 phosphorylation sites and delayed formation of K18 and K19 stable fragments. In contrast, K8 is resistant to proteolysis and remains associated with the K18 fragments. Transfection of phosphorylation/glycosylation-mutant K8 and K18 does not alter fragment formation. The protein domains of the keratin fragments were determined using epitope-defined antibodies, and microsequencing indicated that K18 cleavage occurs at a conserved caspase-specific aspartic acid. The fragments are found preferentially within the detergent-insoluble pool and can be generated, in a phosphorylation-independent manner, by incubating keratins with caspase-3 or with detergent lysates of apoptotic cells but not with lysates of nonapoptotic cells. Our results indicate that type I keratins are targets of apoptosis-activated caspases, which is likely a general feature of keratins in most if not all epithelial cells undergoing apoptosis. Keratin hyperphosphorylation occurs early but does not render the keratins better substrates of the downstream caspases.


Nature Reviews Molecular Cell Biology | 2014

Post-translational modifications of intermediate filament proteins: mechanisms and functions

Natasha T. Snider; M. Bishr Omary

Intermediate filaments (IFs) are cytoskeletal and nucleoskeletal structures that provide mechanical and stress-coping resilience to cells, contribute to subcellular and tissue-specific biological functions, and facilitate intracellular communication. IFs, including nuclear lamins and those in the cytoplasm (keratins, vimentin, desmin, neurofilaments and glial fibrillary acidic protein, among others), are functionally regulated by post-translational modifications (PTMs). Proteomic advances highlight the enormous complexity and regulatory potential of IF protein PTMs, which include phosphorylation, glycosylation, sumoylation, acetylation and prenylation, with novel modifications becoming increasingly appreciated. Future studies will need to characterize their on–off mechanisms, crosstalk and utility as biomarkers and targets for diseases involving the IF cytoskeleton.


Journal of Clinical Investigation | 2009

Toward unraveling the complexity of simple epithelial keratins in human disease

M. Bishr Omary; Nam On Ku; Pavel Strnad; Shinichiro Hanada

Simple epithelial keratins (SEKs) are found primarily in single-layered simple epithelia and include keratin 7 (K7), K8, K18-K20, and K23. Genetically engineered mice that lack SEKs or overexpress mutant SEKs have helped illuminate several keratin functions and served as important disease models. Insight into the contribution of SEKs to human disease has indicated that K8 and K18 are the major constituents of Mallory-Denk bodies, hepatic inclusions associated with several liver diseases, and are essential for inclusion formation. Furthermore, mutations in the genes encoding K8, K18, and K19 predispose individuals to a variety of liver diseases. Hence, as we discuss here, the SEK cytoskeleton is involved in the orchestration of several important cellular functions and contributes to the pathogenesis of human liver disease.


American Journal of Physiology-gastrointestinal and Liver Physiology | 1999

The cytoskeleton of digestive epithelia in health and disease

Nam On Ku; Xiangjun Zhou; Diana M. Toivola; M. Bishr Omary

The mammalian cell cytoskeleton consists of a diverse group of fibrillar elements that play a pivotal role in mediating a number of digestive and nondigestive cell functions, including secretion, absorption, motility, mechanical integrity, and mitosis. The cytoskeleton of higher-eukaryotic cells consists of three highly abundant major protein families: microfilaments (MF), microtubules (MT), and intermediate filaments (IF), as well as a growing number of associated proteins. Within digestive epithelia, the prototype members of these three protein families are actins, tubulins, and keratins, respectively. This review highlights the important structural, regulatory, functional, and unique features of the three major cytoskeletal protein groups in digestive epithelia. The emerging exciting biological aspects of these protein groups are their involvement in cell signaling via direct or indirect interaction with a growing list of associated proteins (MF, MT, IF), the identification of several disease-causing mutations (IF, MF), the functional role that they play in protection from environmental stresses (IF), and their functional integration via several linker proteins that bridge two or potentially all three of these groups together. The use of agents that target specific cytoskeletal elements as therapeutic modalities for digestive diseases offers potential unique areas of intervention that remain to be fully explored.The mammalian cell cytoskeleton consists of a diverse group of fibrillar elements that play a pivotal role in mediating a number of digestive and nondigestive cell functions, including secretion, absorption, motility, mechanical integrity, and mitosis. The cytoskeleton of higher-eukaryotic cells consists of three highly abundant major protein families: microfilaments (MF), microtubules (MT), and intermediate filaments (IF), as well as a growing number of associated proteins. Within digestive epithelia, the prototype members of these three protein families are actins, tubulins, and keratins, respectively. This review highlights the important structural, regulatory, functional, and unique features of the three major cytoskeletal protein groups in digestive epithelia. The emerging exciting biological aspects of these protein groups are their involvement in cell signaling via direct or indirect interaction with a growing list of associated proteins (MF, MT, IF), the identification of several disease-causing mutations (IF, MF), the functional role that they play in protection from environmental stresses (IF), and their functional integration via several linker proteins that bridge two or potentially all three of these groups together. The use of agents that target specific cytoskeletal elements as therapeutic modalities for digestive diseases offers potential unique areas of intervention that remain to be fully explored.


The New England Journal of Medicine | 2001

Keratin 8 mutations in patients with cryptogenic liver disease.

Nam On Ku; Robert G. Gish; Teresa L. Wright; M. Bishr Omary

Background About 10 percent of patients who undergo liver transplantation have cryptogenic liver disease. In animal models, the absence of heteropolymeric keratins 8 and 18 or the presence of mutant keratins in hepatocytes causes or promotes liver disease. We have previously described a mutation in the keratin 18 gene in a patient with cryptogenic cirrhosis, but the importance of mutations in the keratin 8 and keratin 18 genes in such patients is unclear. Methods We tested for mutations in the keratin 8 and keratin 18 genes in purified genomic DNA isolated from 150 explanted livers and 89 peripheral-blood specimens from three groups of patients: 55 patients with cryptogenic liver disease; 98 patients with noncryptogenic liver disease, with causes that included alcohol use, autoimmunity, drug use, and viral infections; and 86 randomly selected inpatients and outpatients who provided blood to the hematology laboratory. Results Of the 55 patients with cryptogenic liver disease, 3 had glycine-to-cysteine muta...


Proceedings of the National Academy of Sciences of the United States of America | 2002

Keratin binding to 14-3-3 proteins modulates keratin filaments and hepatocyte mitotic progression

Nam On Ku; Sara A. Michie; Evelyn Z. Resurreccion; Rosemary L. Broome; M. Bishr Omary

Keratin polypeptides 8 and 18 (K8/18) are the major intermediate filament proteins of simple-type epithelia. K18 Ser-33 phosphorylation regulates its binding to 14-3-3 proteins during mitosis. We studied the significance of keratin binding to 14-3-3 in transgenic mice that overexpress wild-type or Ser-33→Ala (S33A) K18. In S33A but not wild-type K18-overexpressing mice, pancreatic acinar cell keratin filaments retracted from the basal nuclear region and became apically concentrated. In contrast, K18 S33A had a minimal effect on hepatocyte keratin filament organization. Partial hepatectomy of K18-S33A-overexpressing mice did not affect liver regeneration but caused limited mitotic arrest, accumulation of abnormal mitotic figures, dramatic fragmentation of hepatocyte keratin filaments, with retention of a speckled 14-3-3ζ mitotic cell nuclear-staining pattern that usually becomes diffuse during mitosis. Hence, K18 Ser-33 phosphorylation regulates keratin filament organization in simple-type epithelia in vivo. Keratin binding to 14-3-3 may partially modulate hepatocyte mitotic progression, in association with nuclear redistribution of 14-3-3 proteins during mitosis.

Collaboration


Dive into the M. Bishr Omary's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Masaru Harada

University of Occupational and Environmental Health Japan

View shared research outputs
Researchain Logo
Decentralizing Knowledge