Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Natasha T. Snider is active.

Publication


Featured researches published by Natasha T. Snider.


Nature Reviews Molecular Cell Biology | 2014

Post-translational modifications of intermediate filament proteins: mechanisms and functions

Natasha T. Snider; M. Bishr Omary

Intermediate filaments (IFs) are cytoskeletal and nucleoskeletal structures that provide mechanical and stress-coping resilience to cells, contribute to subcellular and tissue-specific biological functions, and facilitate intracellular communication. IFs, including nuclear lamins and those in the cytoplasm (keratins, vimentin, desmin, neurofilaments and glial fibrillary acidic protein, among others), are functionally regulated by post-translational modifications (PTMs). Proteomic advances highlight the enormous complexity and regulatory potential of IF protein PTMs, which include phosphorylation, glycosylation, sumoylation, acetylation and prenylation, with novel modifications becoming increasingly appreciated. Future studies will need to characterize their on–off mechanisms, crosstalk and utility as biomarkers and targets for diseases involving the IF cytoskeleton.


Journal of Pharmacology and Experimental Therapeutics | 2008

The Endocannabinoid Anandamide Is a Substrate for the Human Polymorphic Cytochrome P450 2D6

Natasha T. Snider; Matthew J. Sikora; Chitra Sridar; Thomas J. Feuerstein; James M. Rae; Paul F. Hollenberg

Members of the cytochrome P450 (P450) family of drug-metabolizing enzymes are present in the human brain, and they may have important roles in the oxidation of endogenous substrates. The polymorphic CYP2D6 is one of the major brain P450 isoforms and has been implicated in neurodegeneration, psychosis, schizophrenia, and personality traits. The objective of this study was to determine whether the endocannabinoid arachidonoylethanolamide (anandamide) is a substrate for CYP2D6. Anandamide is the endogenous ligand to the cannabinoid receptor CB1, which is also activated by the main psychoactive component in marijuana. Signaling via the CB1 receptor alters sensory and motor function, cognition, and emotion. Recombinant CYP2D6 converted anandamide to 20-hydroxyeicosatetraenoic acid ethanolamide and 5,6-, 8,9-, 11,12-, and 14,15-epoxyeicosatrienoic acid ethanolamides (EET-EAs) with low micromolar Km values. CYP2D6 further metabolized the epoxides of anandamide to form novel dioxygenated derivatives. Human brain microsomal and mitochondrial preparations metabolized anandamide to form hydroxylated and epoxygenated products, respectively. An inhibitory antibody against CYP2D6 significantly decreased the mitochondrial formation of the EET-EAs. To our knowledge, anandamide and its epoxides are the first eicosanoid-like molecules to be identified as CYP2D6 substrates. Our study suggests that anandamide may be a physiological substrate for brain mitochondrial CYP2D6, implicating this polymorphic enzyme as a potential component of the endocannabinoid system in the brain. This study also offers support to the hypothesis that neuropsychiatric phenotype differences among individuals with genetic variations in CYP2D6 could be ascribable to interactions of this enzyme with endogenous substrates.


Journal of Pharmacology and Experimental Therapeutics | 2007

Anandamide Metabolism by Human Liver and Kidney Microsomal Cytochrome P450 Enzymes to Form Hydroxyeicosatetraenoic and Epoxyeicosatrienoic Acid Ethanolamides

Natasha T. Snider; Andrei M. Kornilov; Ute M. Kent; Paul F. Hollenberg

The endocannabinoid anandamide is an arachidonic acid derivative that is found in most tissues where it acts as an important signaling mediator in neurological, immune, cardiovascular, and other functions. Cytochromes P450 (P450s) are known to oxidize arachidonic acid to the physiologically active molecules hydroxyeicosatetraenoic acids (HETEs) and epoxyeicosatrienoic acids (EETs), which play important roles in blood pressure regulation and inflammation. To determine whether anandamide can also be oxidized by P450s, its metabolism by human liver and kidney microsomes was investigated. The kidney microsomes metabolized anandamide to a single mono-oxygenated product, which was identified as 20-HETE-ethanolamide (EA). Human liver microsomal incubations with anandamide also produced 20-HETE-EA in addition to 5,6-, 8,9-, 11–12, and 14,15-EET-EA. The EET-EAs produced by the liver microsomal P450s were converted to their corresponding dihydroxy derivatives by microsomal epoxide hydrolase. P450 4F2 was identified as the isoform that is most probably responsible for the formation of 20-HETE-EA in both human kidney and human liver, with an apparent Km of 0.7 μM. The apparent Km values of the human liver microsomes for the formation of the EET-EAs were between 4 and 5 μM, and P450 3A4 was identified as the primary P450 in the liver responsible for epoxidation of anandamide. The in vivo formation and biological relevance of the P450-derived HETE and EET ethanolamides remains to be determined.


Pharmacological Reviews | 2010

Oxidation of the Endogenous Cannabinoid Arachidonoyl Ethanolamide by the Cytochrome P450 Monooxygenases: Physiological and Pharmacological Implications

Natasha T. Snider; Vyvyca J. Walker; Paul F. Hollenberg

Arachidonoyl ethanolamide (anandamide) is an endogenous amide of arachidonic acid and an important signaling mediator of the endocannabinoid system. Given its numerous roles in maintaining normal physiological function and modulating pathophysiological responses throughout the body, the endocannabinoid system is an important pharmacological target amenable to manipulation directly by cannabinoid receptor ligands or indirectly by drugs that alter endocannabinoid synthesis and inactivation. The latter approach has the possible advantage of more selectivity, thus there is the potential for fewer untoward effects like those that are traditionally associated with cannabinoid receptor ligands. In that regard, inhibitors of the principal inactivating enzyme for anandamide, fatty acid amide hydrolase (FAAH), are currently in development for the treatment of pain and inflammation. However, several pathways involved in anandamide synthesis, metabolism, and inactivation all need to be taken into account when evaluating the effects of FAAH inhibitors and similar agents in preclinical models and assessing their clinical potential. Anandamide undergoes oxidation by several human cytochrome P450 (P450) enzymes, including CYP3A4, CYP4F2, CYP4X1, and the highly polymorphic CYP2D6, forming numerous structurally diverse lipids, which are likely to have important physiological roles, as evidenced by the demonstration that a P450-derived epoxide of anandamide is a potent agonist for the cannabinoid receptor 2. The focus of this review is to emphasize the need for a better understanding of the P450-mediated pathways of the metabolism of anandamide, because these are likely to be important in mediating endocannabinoid signaling as well as the pharmacological responses to endocannabinoid-targeting drugs.


Gastroenterology | 2011

Corticosterone Mediates Reciprocal Changes in CB 1 and TRPV1 Receptors in Primary Sensory Neurons in the Chronically Stressed Rat

Shuangsong Hong; Gen Zheng; Xiaoyin Wu; Natasha T. Snider; Chung Owyang; John W. Wiley

BACKGROUND & AIMS Chronic stress is associated with visceral hyperalgesia in functional gastrointestinal disorders. We investigated whether corticosterone plays a role in chronic psychological stress-induced visceral hyperalgesia. METHODS Male rats were subjected to 1-hour water avoidance (WA) stress or subcutaneous corticosterone injection daily for 10 consecutive days in the presence or absence of corticoid-receptor antagonist RU-486 and cannabinoid-receptor agonist WIN55,212-2. The visceromotor response to colorectal distension was measured. Receptor protein levels were measured and whole-cell patch-clamp recordings were used to assess transient receptor potential vanilloid type 1 (TRPV1) currents in L6-S2 dorsal root ganglion (DRG) neurons. Mass spectrometry was used to measure endocannabinoid anandamide content. RESULTS Chronic WA stress was associated with visceral hyperalgesia in response to colorectal distension, increased stool output and reciprocal changes in cannabinoid receptor 1 (CB1) (decreased) and TRPV1 (increased) receptor expression and function. Treatment of WA stressed rats with RU-486 prevented these changes. Control rats treated with serial injections of corticosterone in situ showed a significant increase in serum corticosterone associated with visceral hyperalgesia, enhanced anandamide content, increased TRPV1, and decreased CB1 receptor protein levels, which were prevented by co-treatment with RU-486. Exposure of isolated control L6-S2 DRGs in vitro to corticosterone reproduced the changes in CB1 and TRPV1 receptors observed in situ, which was prevented by co-treatment with RU-486 or WIN55,212-2. CONCLUSIONS These results support a novel role for corticosterone to modulate CB1 and TRPV1-receptor pathways in L6-S2 DRGs in the chronic WA stressed rat, which contributes to visceral hyperalgesia observed in this model.


Journal of Biological Chemistry | 2011

Keratin hypersumoylation alters filament dynamics and is a marker for human liver disease and keratin mutation.

Natasha T. Snider; Sujith Weerasinghe; Jorge A. Iñiguez-Lluhí; Harald Herrmann; M. Bishr Omary

Keratin polypeptide 8 (K8) associates noncovalently with its partners K18 and/or K19 to form the intermediate filament cytoskeleton of hepatocytes and other simple-type epithelial cells. Human K8, K18, and K19 variants predispose to liver disease, whereas site-specific keratin phosphorylation confers hepatoprotection. Because stress-induced protein phosphorylation regulates sumoylation, we hypothesized that keratins are sumoylated in an injury-dependent manner and that keratin sumoylation is an important regulatory modification. We demonstrate that K8/K18/K19, epidermal keratins, and vimentin are sumoylated in vitro. Upon transfection, K8, K18, and K19 are modified by poly-SUMO-2/3 chains on Lys-285/Lys-364 (K8), Lys-207/Lys-372 (K18), and Lys-208 (K19). Sumoylation affects filament organization and stimulus-induced keratin solubility and is partially inhibited upon mutation of one of three known K8 phosphorylation sites. Extensive sumoylation occurs in cells transfected with individual K8, K18, or K19 but is limited upon heterodimerization (K8/K18 or K8/K19) in the absence of stress. In contrast, keratin sumoylation is significantly augmented in cells and tissues during apoptosis, oxidative stress, and phosphatase inhibition. Poly-SUMO-2/3 conjugates are present in chronically injured but not normal, human, and mouse livers along with polyubiquitinated and large insoluble keratin-containing complexes. Notably, common human K8 liver disease-associated variants trigger keratin hypersumoylation with consequent diminished solubility. In contrast, modest sumoylation of wild type K8 promotes solubility. Hence, conformational changes induced by keratin natural mutations and extensive tissue injury result in K8/K18/K19 hypersumoylation, which retains keratins in an insoluble compartment, thereby limiting their cytoprotective function.


Gastroenterology | 2010

Gender Dimorphic Formation of Mouse Mallory–Denk Bodies and the Role of Xenobiotic Metabolism and Oxidative Stress

Shinichiro Hanada; Natasha T. Snider; Elizabeth M. Brunt; Paul F. Hollenberg; M. Bishr Omary

BACKGROUND & AIMS Mallory-Denk bodies (MDBs) are keratin (K)-rich cytoplasmic hepatocyte inclusions commonly associated with alcoholic steatohepatitis. Given the significant gender differences in predisposition to human alcohol-related liver injury, and the strain difference in mouse MDB formation, we hypothesized that sex affects MDB formation. METHODS MDBs were induced in male and female mice overexpressing K8, which are predisposed to MDB formation, and in nontransgenic mice by feeding the porphyrinogenic compound 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC). MDB presence was determined by histologic, immunofluorescence, and biochemical analyses and correlated to liver injury using serologic and pathologic markers. Cytoskeletal and metabolic liver protein analysis, in vitro metabolism studies, and measurement of oxidative stress markers and protoporphyrin-IX were performed. RESULTS Male mice formed significantly more MDBs, which was attenuated modestly by estradiol. MDB formation was accompanied by increased oxidative stress. Female mice had significantly fewer MDBs and oxidative stress-related changes, but had increased ductular reaction protoporphyrin-IX accumulation, and MDB-preventive K18 induction. Evaluation of the microsomal cytochrome-P450 (CYP) enzymes revealed significant gender differences in protein expression and activity in untreated and DDC-fed mice, and showed that DDC is metabolized by CYP3A. The changes in CYPs account for the gender differences in porphyria and DDC metabolism. DDC metabolite formation and oxidative injury accumulate on chronic DDC exposure in males, despite more efficient acute metabolism in females. CONCLUSIONS Gender dimorphic formation of MDBs and porphyria associate with differences in CYPs, oxidative injury, and selective keratin induction. These findings may extend to human MDBs and other neuropathy- and myopathy-related inclusions.


Drug Metabolism and Disposition | 2011

Anandamide oxidation by wild-type and polymorphically expressed CYP2B6 and CYP2D6

Chitra Sridar; Natasha T. Snider; Paul F. Hollenberg

Anandamide is an arachidonic acid-derived endogenous cannabinoid that regulates normal physiological functions and pathophysiological responses within the central nervous system and in the periphery. Several cytochrome P450 (P450) isoforms metabolize anandamide to form hydroxylated and epoxygenated products. Human CYP2B6 and CYP2D6, which are expressed heterogeneously throughout the brain, exhibit clinically significant polymorphisms and are regulated by external factors, such as alcohol and smoking. Oxidative metabolism of anandamide by these two P450s may have important functional consequences for endocannabinoid system signaling. In this study, we investigated the metabolism of anandamide by wild-type CYP2B6 (2B6.1) and CYP2D6 (2D6.1) and by their common polymorphic mutants 2B6.4, 2B6.6, 2B6.9, and 2D6.34. Major differences in anandamide metabolism by the two isoforms and their mutants were found in vitro with respect to the formation of 20-hydroxyeicosatetraenoic acid ethanolamide (20-HETE-EA) and 14,15-epoxyeicosatetraenoic acid ethanolamide (14,15-EET-EA). Pharmacological studies showed that both 20-HETE-EA and 14,15-EET-EA bind to the rat brain cannabinoid CB1 receptor with lower affinities relative to that of anandamide. In addition, both products are degraded more rapidly than anandamide in rat brain homogenates. Their degradation occurs via different mechanisms involving either fatty acid amide hydrolase (FAAH), the major anandamide-degrading enzyme, or epoxide hydrolase (EH). Thus, the current findings provide potential new insights into the actions of inhibitors FAAH and EH, which are being developed as novel therapeutic agents, as well as a better understanding of the interactions between the cytochrome P450 monooxygenases and the endocannabinoid system.


Journal of Cell Biology | 2011

Energy determinants GAPDH and NDPK act as genetic modifiers for hepatocyte inclusion formation.

Natasha T. Snider; Sujith Weerasinghe; Amika Singla; Jessica M. Leonard; Shinichiro Hanada; Philip C. Andrews; Anna S. Lok; M. Bishr Omary

Differential expression and activity of the cellular energy regulators GAPDH and NDPK underlie reactive oxygen species–induced damage in the mouse liver and may contribute to human liver disease progression.


Journal of Cell Biology | 2013

Glucose and SIRT2 reciprocally mediate the regulation of keratin 8 by lysine acetylation.

Natasha T. Snider; Jessica M. Leonard; Raymond Kwan; Nicholas W. Griggs; Liangyou Rui; M. Bishr Omary

Keratin 8 lysine acetylation, which is enhanced by hyperglycemia and reduced by SIRT2, alters filament organization and reduces solubility.

Collaboration


Dive into the Natasha T. Snider's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Amika Singla

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anna S. Lok

University of Michigan

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge