M. C. Araya
Purdue University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by M. C. Araya.
The Astrophysical Journal | 2011
V. A. Acciari; E. Aliu; M. C. Araya; T. Arlen; T. Aune; M. Beilicke; W. Benbow; S. M. Bradbury; J. H. Buckley; V. Bugaev; K. L. Byrum; A. Cannon; A. Cesarini; L. Ciupik; E. Collins-Hughes; W. Cui; R. Dickherber; C. Duke; A. Falcone; J. P. Finley; L. Fortson; A. Furniss; N. Galante; D. Gall; S. Godambe; S. Griffin; R. Guenette; G. Gyuk; D. Hanna; J. Holder
Giant X-ray outbursts, with luminosities of about 10{sup 37} erg s{sup -1}, are observed roughly every five years from the nearby Be/pulsar binary 1A 0535+262. In this article, we present observations of the source with VERITAS at very high energies (VHEs; E >100 GeV) triggered by the X-ray outburst in 2009 December. The observations started shortly after the onset of the outburst and provided comprehensive coverage of the episode, as well as the 111 day binary orbit. No VHE emission is evident at any time. We also examined data from the contemporaneous observations of 1A 0535+262 with the Fermi/Large Area Telescope at high-energy photons (E > 0.1 GeV) and failed to detect the source at GeV energies. The X-ray continua measured with the Swift/X-Ray Telescope and the RXTE/PCA can be well described by the combination of blackbody and Comptonized emission from thermal electrons. Therefore, the gamma-ray and X-ray observations suggest the absence of a significant population of non-thermal particles in the system. This distinguishes 1A 0535+262 from those Be X-ray binaries (such as PSR B1259-63 and LS I +61{sup 0}303) that have been detected at GeV-TeV energies. We discuss the implications of the results on theoretical models.
The Astrophysical Journal | 2010
M. C. Araya; David Lomiashvili; Chulhoon Chang; Maxim Lyutikov; Wei Cui
Thin nonthermal X-ray filaments are often seen in young supernova remnants. We used data from the 1 Ms Chandra observation of Cassiopeia A to study spectral properties of some of the filaments in this remnant. For all the cases that we examined, the X-ray spectrum across the filaments hardens, at about 10% level, going outward, while observed filament widths depend only weakly on the photon energy. Using a model that includes radiative cooling, advection, and diffusion of accelerated particles behind the shock, we estimated the magnetic field, turbulence level, and shock obliquity.
Physical Review D | 2015
B. Abbott; R. Abbott; T. D. Abbott; M. Abernathy; F. Acernese; K. Ackley; C. Adams; T. Adams; P. Addesso; R. Adhikari; V. B. Adya; C. Affeldt; M. Agathos; K. Agatsuma; N. Aggarwal; O. D. Aguiar; A. Ain; P. Ajith; B. Allen; A. Allocca; D. Amariutei; S. Anderson; W. G. Anderson; Koji Arai; M. C. Araya; C. C. Arceneaux; J. S. Areeda; N. Arnaud; K. G. Arun; G. Ashton
We present the results of a search for long-duration gravitational wave transients in two sets of data collected by the LIGO Hanford and LIGO Livingston detectors between November 5, 2005 and September 30, 2007, and July 7, 2009 and October 20, 2010, with a total observational time of 283.0 days and 132.9 days, respectively. The search targets gravitational wave transients of duration 10 - 500 seconds in a frequency band of 40 - 1000 Hz, with minimal assumptions about the signal waveform, polarization, source direction, or time of occurrence. All candidate triggers were consistent with the expected background; as a result we set 90% confidence upper limits on the rate of long-duration gravitational wave transients for different types of gravitational wave signals. We also report upper limits on the source rate density per year per Mpc^3 for specific signal models. These are the first results from an all-sky search for unmodeled long-duration transient gravitational waves.
The Astrophysical Journal | 2010
M. C. Araya; Wei Cui
Archive | 2012
J. Aasi; J. Abadie; B. Abbott; R. Abbott; T. D. Abbott; M. Abernathy; T. Accadia; F. Acernese; C. Adams; T. Adams; P. Addesso; R. Adhikari; C. Affeldt; M. Agathos; K. Agatsuma; P. Ajith; B. Allen; A. Allocca; E. Amador Ceron; D. Amariutei; S. Anderson; W. G. Anderson; Koji Arai; M. C. Araya; S. Ast; S. Aston; P. Astone; D. Atkinson; P. Aufmuth; C. Aulbert
arXiv: High Energy Astrophysical Phenomena | 2009
M. C. Araya; David Lomiashvili; Chulhoon Chang; Maxim Lyutikov; Wei Cui