M.C. Manna
Indian Institute of Soil Science
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by M.C. Manna.
Journal of Applied Microbiology | 2013
Udai B. Singh; Asha Sahu; N. Sahu; R.K. Singh; S. Renu; D.P. Singh; M.C. Manna; Birinchi Kumar Sarma; Harikesh Bahadur Singh; K.P. Singh
To study the biocontrol potential of nematode‐trapping fungus Arthrobotrys oligospora in protecting tomato (Lycopersicon esculentum Mill.) against Meloidogyne incognita and Rhizoctonia solani under greenhouse and field conditions.
Microbiological Research | 2016
Udai B. Singh; Deepti Malviya; Wasiullah; Shailendra Singh; Jatindra K. Pradhan; Bhanu P. Singh; Manish Roy; Mohd. Imram; Neelam Pathak; B.M. Baisyal; Jai P. Rai; Birinchi Kumar Sarma; Rajiv K. Singh; Pankaj Sharma; Saman Deep Kaur; M.C. Manna; Sushil K. Sharma; Arun Kumar Sharma
Sheath blight of rice (Oryza sativa L.) caused by Rhizoctonia solani is a major disease and attempts are being made to develop microbe based technologies for biocontrol of this pathogen. However, the mechanisms of biocontrol are not fully understood and still require indepth study in the backdrop of emerging concepts in biological systems. The present investigation was aimed at deciphering the mechanisms of biocontrol of sheath blight of rice employing Pseudomonas fluorescens and Trichoderma harzianum as model agents for biocontrol. Initially 25, 5 and 5 strains of P. fluorescens, T. viride and T. harzianum, respectively, were screened for their biocontrol potential. Out of which, six strains with higher value of percent inhibition of fungal mycelium in dual plate assay were selected. The role of P. fluorescens, T. viride and T. harzianum were investigated in induction and bioaccumulation of natural antioxidants, defence-related biomolecules and other changes in plant which lead not only to growth promotion but also protection from pathogenic stress conditions in rice. The two most promising strains, P. fluorescens PF-08 and T. harzianum UBSTH-501 selected on the basis of in planta evaluation, when applied individually or in combination, significantly enhanced the accumulation of defence-related biomolecules, enzymes and exhibited biocontrol potential against R. solani. A modified/newly developed delivery system was applied for the first time in the experiments involving inoculation of plants with both bioagents, viz. P. fluorescens PF-08 and T. harzianum UBSTH-501. Results suggested that application of P. fluorescens PF-08 and T. harzianum UBSTH-501 alone or in combination, not only helps in control of the disease but also increases plant growth along with reduction in application of toxic chemical pesticides.
Archive | 2018
Asha Sahu; Sudeshna Bhattacharjya; Asit Mandal; Jyoti Kumar Thakur; Nagwanti Atoliya; Nisha Sahu; M.C. Manna; Ashok K. Patra
The soil scientists along with microbiologists had a big responsibility to come forward with a sustainable solution to enhance soil nutrient supplying capacity, without applying the agrochemical and mineral fertilizers. The only way out to this problem is through the use of efficient microbes which plays a vital role as organic or biological agents in facilitating uptake of many primary and secondary nutrients. Moreover, the fertility of any soil is directly proportional to the microbial biomass and its potential of functional activity and diversity. Billions of microbes which are present in soil are major key players of nutrient cycling and their solubilization and mineralization. This fact has been known and scientifically reported for a number of decades, but still its significance has not yet channelized into the mainstream of intensive agriculture. Thus, in this chapter, exhaustive overview of the different groups of agriculturally important microbes has been given which are responsible for enhancing nutrient availability particularly nitrogen, phosphorus, potassium, sulphur, iron and zinc in agricultural soils.
Journal of Experimental Biology and Agricultural Sciences | 2018
Satish Bhagwatrao Aher; Brij Lal Lakaria; Swami Kaleshananda; Amar Bahadur Singh; S. Ramana; Jyoti Kumar Thakur; A.K. Biswas; Pramod Jha; M.C. Manna; Dharmendra Singh Yashona
Present field experiment was conducted at the Indian Institute of Soil Science, Bhopal, India in a clayey soil (Typic Haplusterts) under soybean (Glycine max, cv. JS 335) wheat (Triticum durum, cv. HI 8498) cropping system in a randomized block design with seven treatments in four replications to study the changes in soil fungal, bacterial and actinomycetes population; and resultant enzymatic activities in soil under organic, biodynamic and conventional agriculture management. The results of study revealed that, the soil microbial population (bacteria, fungi and actinomycetes), soil enzyme activities and soil microbial biomass carbon were found in the order of organic > conventional ≥ biodynamic agriculture. The organic agriculture registered 27-102% and 28-111% higher enzymatic activities than conventional and biodynamic agriculture, respectively. Similarly, soil microbial biomass carbon was found 30-45% and 33-42% higher under organic agriculture management as compared to conventional and biodynamic agriculture management, respectively. No significant effect of biodynamic agriculture management on soil microbial properties was observed. * Corresponding author
Frontiers in Plant Science | 2018
Udai B. Singh; Deepti Malviya; Wasiullah Khan; Shailendra Singh; N. Karthikeyan; Mohd Imran; Jai P. Rai; Birinchi Kumar Sarma; M.C. Manna; Rajan Chaurasia; Arun Kumar Sharma; Diby Paul; Jae-Wook Oh
The present investigation was aimed at evaluating the impact of earthworm grazed and Trichoderma harzianum biofortified spent mushroom substrate (SMS) on natural antioxidant and nutritional properties of tomato. Results of the investigation reveal that earthworm grazing and T. harzianum bio-fortification led to significant improvement in the physico-chemical properties of fresh SMS and its application increased the accumulation of natural antioxidants and mineral content in tomato as compared to either T. harzianum biofortified SMS or fresh SMS. In particular, the earthworm grazed, T. harzianum biofortified SMS (EGTHB-SMS) was found to inhibit lipid peroxidation and protein oxidation with significant increase in total polyphenol and flavonoid content in tomato. Further, it increased Fe2+/Fe3+ chelating activity, superoxide anion radical scavenging activity compared to other treatments. The results thus suggest an augmented elicitation of natural antioxidant properties in tomato treated with EGTHB-SMS, resulting in a higher radical scavenging activity, that is highly desirable for human health. In addition, the use of SMS to enhance the nutritional value of tomato fruits becomes an environment friendly approach in sustainable crop production.
Archives of Agronomy and Soil Science | 2018
Asit Mandal; Jyoti Kumar Thakur; Asha Sahu; M.C. Manna; Annangi Subba Rao; Binoy Sarkar; Ashok K. Patra
ABSTRACT Growing areas under transgenic crops have created a concern over their possible adverse impact on the soil ecosystem. This study evaluated the effect of Bt-cotton based cropping systems on soil microbial and biochemical activities and their functional relationships with active soil carbon pools in Vertisols of central India (Nagpur, Maharastra, during 2012–2013). Culturable groups of soil microflora, enzymatic activities and active pools of soil carbon were measured under different Bt-cotton based cropping systems (e.g. cotton-soybean, cotton-redgram, cotton-wheat, cotton-vegetables and cotton-fallow). Significantly higher counts of soil heterotrophs (5.7–7.9 log cfu g−1 soil), aerobic N-fixer (3.9–5.4 log cfu g−1 soil) and P-solubilizer (2.5−3.0 log cfu g−1 soil) were recorded in Bt-cotton soils. Similarly, soil enzymatic activities, viz. dehydrogenase (16.6–22.67 µg TPF g−1 h−1), alkaline phosphatase (240–253 µg PNP g−1 h−1) and fluorescein di-acetate hydrolysis (14.6–18.0 µg fluorescein g−1 h−1), were significantly higher under Bt-cotton-soybean system than other Bt- and non-Bt-cotton based systems in all crop growth stages. The growth stage-wise order of soil microbiological activities were: boll development > harvest > vegetative stage. Significant correlations were observed between microbiological activities and active carbon pools in the rhizosphere soil. The findings indicated no adverse effect of Bt-cotton on soil biological properties.
Archive | 2016
Asit Mandal; Jyoti Kumar Thakur; Asha Sahu; Sudeshna Bhattacharjya; M.C. Manna; Ashok K. Patra
The diversity of microbes present in the rhizosphere plays a significant role in nutrient cycling and soil sustainability. Plant–microbe-modulated phytoremediation is a viable technology for the cleanup of contaminated environments. Several plants that were identified have various degrees of capacity to eliminate, degrade or detoxify, metabolize, or immobilize a wide range of soil contaminants. Plant-based remediation technologies are not yet commercialized because of its major limitation of slow process and restricted bioavailability of the contaminants, and it is greatly influenced by the climatic factors. The extensive use of plants can overcome most of the limitations by exploring the potential of microbe–plant–metal interaction. The biogeochemical process occurring in the root zone can influence on several rhizobacteria and mycorrhizae directly linked with microbial metabolite synthesis. Thus, a holistic approach of novel remediation technologies and understanding of plant–microbe–contaminant interaction would help for customizing phytoremediation process in relation to site-specific contamination. There is a huge challenge to remediation of contaminated sites by long-term accumulation of heavy metal. Unlike organic contaminants, metals are very much resistant to degradation, and in the long run, continuous accumulation may cause food chain contamination. It is very important to decontaminate the polluted sites in order to reach safe level of metal concentration below the threshold limit of toxicity. Recent studies revealed that phytoextraction, mainly the use of hyperaccumulator plants to extract toxic metals from the contaminated sites, has emerged as a cost-effective, eco-friendly cleanup technology. Novel, efficient microbes and their potential use in the plant rhizosphere could further enhance the phytoremediation for wider range of soil contaminants.
Agronomy Journal | 2006
P.K. Ghosh; M.C. Manna; K.K. Bandyopadhyay; Ajay; A.K. Tripathi; R.H. Wanjari; K.M. Hati; A.K. Misra; C.L. Acharya; A. Subba Rao
European Journal of Agronomy | 2009
P. K. Ghosh; A.K. Tripathi; K.K. Bandyopadhyay; M.C. Manna
Biological Control | 2012
Udai B. Singh; Asha Sahu; R.K. Singh; Dhananjaya P. Singh; Kamlesh K. Meena; J.S. Srivastava; Renu; M.C. Manna